
Tanja	 E.	 J.	 Vos	
So#ware	 Tes+ng	 and	 Quality	 Group	

Research	 center	 for	 So#ware	 Produc+on	 Methods	 (PROS)	
Universidad	 Politecnica	 de	 Valencia	

Spain	
	

SATToSE	 2014,	 L’Aquila	 2014	
	

	
Test	 Automa+on	 at	 the	 useR	 interface	 level	

estT *

Contents	
•  FITTEST	 project	
•  Tes+ng	 at	 the	 UI	 level:	 what	 and	 state-‐of-‐the-‐art	
•  TESTAR	 and	 how	 it	 works	
•  How	 it	 has	 been	 used	

2	

FITTEST	
•  Future Internet Testing
•  September 2010 – February 2014
•  Total costs: 5.845.000 euros
•  Partners:	

–  Universidad	 Politecnica	 de	 Valencia	 (Spain)	
–  University	 College	 London	 (United	 Kingdom)	
–  Berner	 &	 MaTner	 (Germany)	
–  IBM	 (Israel)	
–  Fondazione	 Bruno	 Kessler	 (Italy)	
–  Universiteit	 Utrecht	 (The	 Netherlands)	
–  So#team	 (France)	 	

•  	 hTp://www.pros.upv.es/fiTest/	

•  Future Internet Applications
–  Characterized by an extreme high level of dynamism
–  Adaptation to usage context (context awareness)
–  Dynamic discovery and composition of services
–  Limited observability (3rd party black-box components)
–  Etc..

•  Testing of these applications gets extremely important
•  Society depends more and more on them
•  Critical activities such as social services, learning, finance, business.

•  Traditional testing is not enough
–  Testwares are fixed

•  Continuous testing is needed
–  Testwares that automatically adapt to the dynamic behavior of the

Future Internet application
–  This is the objective of FITTEST

FITTEST	 objec+ves/results	

The	 FITTEST	 tools	 for	 	
Con+nuous	 Tes+ng	

ORACLES

RUN SUT

GENERATE
TEST CASES

AUTOMATE
TEST CASES

SUT

INSTRUMENT

COLLECT &
PREPROCESS

LOGS

LOGGING TEST-WARE GENERATION

ANALYSE & INFER
MODELS

ANALYSE &
INFER ORACLES

EXECUTE
TEST CASES

TEST EVALUATION

EVALUATE
TEST CASES

MODEL BASED
ORACLES

HUMAN
ORACLES

TEST
RESULTS

TEST EXECUTION

FREE ORACLES

Model based
oracles

PROPERTIES
BASED ORACLES

Log based
oracles

End-users

PATTERN BASED
ORACLES

MANUALLY

Domain experts Domain Input
Specifications

OPTIONAL MANUAL EXTENSIONS

FITTEST	 con+nuous	 tes+ng	 system	

LOGGING	

1.  Run	 the	 target	 System	 that	 is	 Under	 Test	 (SUT)	
2.  Collect	 the	 logs	 it	 generates	
	
This	 can	 be	 done	 by:	
	
•  real	 usage	 by	 end	 users	 of	 the	 applica+on	 in	

the	 produc+on	 environment	

•  test	 case	 execu+on	 in	 the	 test	 environment.	
	
	

How	 does	 it	 work?	 	

ORACLES

RUN SUT

GENERATE
TEST CASES

AUTOMATE
TEST CASES

SUT

INSTRUMENT

COLLECT &
PREPROCESS

LOGS

LOGGING TEST-WARE GENERATION

ANALYSE & INFER
MODELS

ANALYSE &
INFER ORACLES

EXECUTE
TEST CASES

TEST EVALUATION

EVALUATE
TEST CASES

MODEL BASED
ORACLES

HUMAN
ORACLES

TEST
RESULTS

TEST EXECUTION

FREE ORACLES

Model based
oracles

PROPERTIES
BASED ORACLES

Log based
oracles

End-users

PATTERN BASED
ORACLES

MANUALLY

Domain experts Domain Input
Specifications

OPTIONAL MANUAL EXTENSIONS

GENERATION	

1.  Analyse	 the	 logs	
	
2.  Generate	 different	 testwares:	

	
• Models	
•  Domain	 Input	 SpecificaCon	
•  Oracles	
	

3.  Use	 these	 to	 generate	 and	
automate	 a	 test	 suite	 consis+ng	
off:	

•  Abstract	 test	 cases	
•  Concrete	 test	 cases	
•  Pass/Fail	 EvaluaCon	 criteria	

	
	

How	 does	 it	 work?	 	

ORACLES

RUN SUT

GENERATE
TEST CASES

AUTOMATE
TEST CASES

SUT

INSTRUMENT

COLLECT &
PREPROCESS

LOGS

LOGGING TEST-WARE GENERATION

ANALYSE & INFER
MODELS

ANALYSE &
INFER ORACLES

EXECUTE
TEST CASES

TEST EVALUATION

EVALUATE
TEST CASES

MODEL BASED
ORACLES

HUMAN
ORACLES

TEST
RESULTS

TEST EXECUTION

FREE ORACLES

Model based
oracles

PROPERTIES
BASED ORACLES

Log based
oracles

End-users

PATTERN BASED
ORACLES

MANUALLY

Domain experts Domain Input
Specifications

OPTIONAL MANUAL EXTENSIONS

Execute the test cases
and start a new test
cycle for continuous
testing and adaptation of
the test wares!

And	 it	 does	 work,	 but…….	
•  We	 cannot	 always	 get	 the	 logs…	 	

•  The	 logs	 do	 not	 always	 contain	 the	 info	 we	 need	 to	 derive	 a	 good	
model/oracle	 	

•  Instrumenta+on	 is	 not	 always	 an	 op+on	 (3rd	 party	 components)	
	

9	

Do	 you	 want	 to	 know	 more…	
•  Vos,	 Tanja	 E.J.,	 Lakho+a,	 Kiran,	 Bauersfeld,	 Sebas+an	 (Eds.)	 Future	

Internet	 TesCng,	 LNCS	 8432,	 2014	

•  Paolo	 Tonella	 youtube	 lecture:	
hTps://www.youtube.com/watch?v=TnuiEGS6iyc	

•  Cu	 D.	 Nguyen,	 Bilha	 Mendelson,	 Daniel	 Citron,	 Onn	 Shehory,	 Tanja	
E.J.	 Vos,	 and	 Nelly	 Condori-‐Fernandez.	 EvaluaCng	 the	 fiNest	
automated	 tesCng	 tools:	 An	 industrial	 case	 study.	 In	 Proceedings	
ESEM	 2013,	 pp	 332–339.	

10	

If	 we	 cannot	 rely	 on	 the	 logs,	 why	 not	
rely	 on	 what	 we	 can	 see….	 the	 UI	

Tes+ng	 at	 the	 UI	 Level	

•  UI	 is	 where	 all	 func+onality	 comes	 together	
–  Integra+on	 /	 System	 Tes+ng	

•  Most	 applica+ons	 have	 UIs	
–  Computers,	 tables,	 smartphones….	

•  Faults	 that	 arise	 at	 UI	 level	 are	 important	
–  These	 are	 what	 your	 client	 finds	 -‐>	 test	 from	 their	 perspec+ve!	

•  No	 need	 for	 source	 code	
–  But	 if	 we	 have	 it	 even	 beTer	 ;-‐)	

State	 of	 the	 art	 in	 UI	 tes+ng	

•  Capture	 Replay	
–  The	 tool	 captures	 user	 interac+on	 with	 the	 UI	 and	 records	 a	 script	 that	

can	 be	 automa+cally	 replayed	 during	 regression	 tes+ng	
–  UI	 change	 (at	 development	 +me	 &	 at	 run	 +me)	
–  Automated	 regression	 tests	 break	
–  Huge	 maintenance	 problem	
	

•  Visual	 Tes+ng	

	
•  Model-‐based	 Tes+ng	

State	 of	 the	 art	 in	 UI	 tes+ng	
•  Capture	 Replay	

•  Visual	 tesCng	
–  Based	 on	 image	 recogni+on	
–  Easy	 to	 understand,	 no	 programming	 skills	 needed	
–  Solves	 most	 of	 maintenance	 problem	
–  Introduces	 addi+onal	 problems:	

•  Performance	 of	 image	 processing	 	
•  False	 posi+ves	 and	 false	 nega+ves	

–  the	 ambiguity	 associated	 with	 image	 locators	 	
–  imprecision	 of	 image	 recogni+on	 feeds	 into	 oracles	

	
•  Model-‐based	 Tes+ng	

State	 of	 the	 art	 in	 UI	 tes+ng	
•  Capture	 Replay	

•  Visual	 tes+ng	
	

•  (ui)	 Model-‐based	 tesCng	 -‐-‐	 TESTAR	 	
–  Based	 on	 automa+cally	 inferred	 tree	 model	 of	 the	 UI	
–  Tests	 sequences	 are	 derived	 automa+cally	 from	 the	 model	
–  Executed	 sequences	 can	 be	 replayed	
–  If	 UI	 changes	 so	 does	 the	 model/tests	 -‐>	 no	 maintenance	 of	 the	 tests	
–  Programming	 skills	 are	 needed	 to	 define	 powerful	 oracles	

•  It	 needs	 to	 be	 inves+gated	 more	 if	 this	 is	 really	 a	 problem….	
•  Do	 we	 want	 testers	 to	 have	 programming	 skills?	

type: TButton

...
rect: [15, 25, 65, 55]

hasFocus: true
enabled: false
title: "Button"

Window

Button Text SliderMenu

MI MI MI MI

type: TMenuItem

...
title: "File"

ABC

type: TButton

...
rect: [15, 25, 65, 55]

hasFocus: true
enabled: false
title: "Button"

Window

Button Text SliderMenu

MI MI MI MI

type: TMenuItem

...
title: "File"

ABC

estT *

16	

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

How
it works..

estT *

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

-‐  Run	 executable	 /	 command	
-‐  Bring	 SUT	 into	 dedicated	 start	 state	

(delete	 or	 restore	 configura+on	 files)	
-‐  Wait	 un+l	 SUT	 fully	 loaded	

estT *

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

Obtain	 state	 (Widget	 Tree)	
through	 Accessibility	 API	

estT *

Widget	 Trees	

	

type: TButton

...
rect: [15, 25, 65, 55]

hasFocus: true
enabled: false
title: "Button"

Window

Button Text SliderMenu

MI MI MI MI

type: TMenuItem

...
title: "File"

ABC

type: TButton

...
rect: [15, 25, 65, 55]

hasFocus: true
enabled: false
title: "Button"

Window

Button Text SliderMenu

MI MI MI MI

type: TMenuItem

...
title: "File"

ABC

type: TButton

...
rect: [15, 25, 65, 55]

hasFocus: true
enabled: false
title: "Button"

Window

Button Text SliderMenu

MI MI MI MI

type: TMenuItem

...
title: "File"

ABC

20
20

!"#$%&' ()*%%

+,&--*.

+/0$/#"1*

+//%,&.

2//%,&.

2//%31*0

2//%31*0

2//%,&.

2//%,&. 2//%31*0

2//%,&.

2//%,&.

+//%31*0

+//%31*0

+/0$/#"1* +//%,&.

+/0$/#"1* 2//%,&.

2//%31*0

2//%31*0

+//%31*0

(1&14#5"-*

+5&6*%

2//%,&. 2//%31*0

+/0$/#"1* 7./8.*##3-9":&1/.

7./8.*##;*8"/-<=

+&->&#

+/0$/#"1*

+/0$/#"1* +/0$/#"1*

2//%,&.

2//%31*0

2//%31*0

2//%31*0

2//%31*0

+/0$/#"1* +/0$/#"1* 7&8*,//? 2.**

2.**+/%40-

2.**+/%40-

+/0$/#"1* +/0$/#"1* 7&8*,//? +/0$/#"1* 5&6*%

+/0$/#"1* +2&6@/%9*. 2//%,&. 2//%31*0

A"*B@/.0+2&6@/%9*. A"*B@/.0

+2&631*0+2&6@/%9*.

2//%,&. 2//%31*0

A"*B@/.0

+2&631*0

(&#)

(&#)

2."0+/00/-C3D&-9%*

+//%,&.
+/0$/#"1*

+//%31*0

E*-4

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

@/.0

E&"-FE*-4

G9"#&6%*9H

(*&.:)

Active Widget Tree

21
21

!"#$%&' ()*%%

+,&--*.

+/0$/#"1*

+//%,&.

2//%,&.

2//%31*0

2//%31*0

2//%,&.

2//%,&. 2//%31*0

2//%,&.

2//%,&.

+//%31*0

+//%31*0

+/0$/#"1* +//%,&.
+/0$/#"1* 2//%,&.

2//%31*0

2//%31*0

+//%31*0

(1&14#5"-*

+5&6*%

2//%,&. 2//%31*0

+/0$/#"1* 7./8.*##3-9":&1/.

7./8.*##;*8"/-<=

+&->&#

+/0$/#"1*

+/0$/#"1* +/0$/#"1*

2//%,&.

2//%31*0

2//%31*0

2//%31*0

2//%31*0

+/0$/#"1* +/0$/#"1* 7&8*,//? 2.**

2.**+/%40-

2.**+/%40-

+/0$/#"1* +/0$/#"1* 7&8*,//? +/0$/#"1* 5&6*%

+/0$/#"1* +2&6@/%9*. 2//%,&. 2//%31*0

A"*B@/.0+2&6@/%9*. A"*B@/.0

+2&631*0+2&6@/%9*.

2//%,&. 2//%31*0

A"*B@/.0

+2&631*0

(&#)

(&#)

2."0+/00/-C3D&-9%*

+//%,&. +/0$/#"1*

+//%31*0

E*-4

E*-431*0

E*-4

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0 !./$!/B-
E*-4

Active Widget Tree

22
22

!"#$%&' ()*%%

+,&--*.

+/0$/#"1*

+//%,&.

2//%,&.

2//%31*0

2//%31*0

2//%,&.

2//%,&. 2//%31*0

2//%,&.

2//%,&.

+//%31*0

+//%31*0

+/0$/#"1* +//%,&.

+/0$/#"1* 2//%,&.

2//%31*0

2//%31*0

+//%31*0

(1&14#5"-*

+5&6*%

2//%,&. 2//%31*0

+/0$/#"1* 7./8.*##3-9":&1/.

7./8.*##;*8"/-<=

+&->&#

+/0$/#"1*

+/0$/#"1* +/0$/#"1*

2//%,&.

2//%31*0

2//%31*0

2//%31*0

2//%31*0

+/0$/#"1* +/0$/#"1* 7&8*,//? 2.**

2.**+/%40-

2.**+/%40-

+/0$/#"1* +/0$/#"1* 7&8*,//? +/0$/#"1* 5&6*%

+/0$/#"1* +2&6@/%9*. 2//%,&. 2//%31*0

A"*B@/.0+2&6@/%9*. A"*B@/.0

+2&631*0+2&6@/%9*.

2//%,&. 2//%31*0

A"*B@/.0

+2&631*0

(&#)

(&#)

2."0+/00/-C3D&-9%* +//%,&.

+/0$/#"1*

+//%31*0

E*-4

E*-431*0

E*-431*0

E*-431*0

E*-431*0

E*-431*0
()*%%

+/0$/#"1*

+/0$/#"1*

+/0$/#"1*

5&6*%

+/0$/#"1* +/0$/#"1*

5&6*%

2*F1

,411/-5&6*%

+/0$/#"1* +/0$/#"1*

,411/-

,411/-5&6*%

5&6*%

2*F1

!"&%/8

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION-‐  Use	 informa+on	 in	 Widget	 Tree	 to	

derive	 a	 set	 of	 “sensible”	 ac+ons	
-‐  Click	 on	 enabled	 BuTons,	 Type	 into	

Text	 Boxes…	

estT *

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

-‐  Select	 one	 of	 the	 ac+ons	 from	 the	
ac+on	 set	

-‐  Various	 possible	 strategies:	 	
-‐  Random,	 	
-‐  Coverage	 Metrics,	 	
-‐  Search-‐based…	

estT *

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

Execute	 and	 record	
selected	 ac+on	

estT *

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

Oracle	 -‐>	 Check	 whether	
state	 is	 erroneous	

estT *

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

Stopping	 Criteria:	
-‐  A#er	 X	 ac+ons	
-‐  A#er	 Y	 hours	
-‐  A#er	 some	 state	

occurred	
-‐  etc	 ….	

Did	 we	 find	 a	 fault?	

estT *

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

Save	 sequence	 if	 it	
contained	 errors	

estT *

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTIONVarious	 stopping	 criteria:	

-‐  X	 sequences	
-‐  Y	 hours	
-‐  …	

estT *

TESTAR	 tool	
READY	

30	

Set	 path	 the	 SUT	

TESTAR	 tool	
SET	

31	

Filter:	
	
1)	 undesirable	 ac+ons,	 	
i.e.	 closing	 the	 applica+on	 	
al	 the	 +me	
	
	
2)	 Undesirable	 processes,	 for	
example	 help	 panes	 in	
acrobat,	 etc…….	

32	

GO!	
See	 video	 at	 hTps://www.youtube.com/watch?v=PBs9jF_pLCs	

Oracles	 for	 free	

•  What	 can	 we	 easily	 detect?	
•  Crashes	

	
	
	
	
	

•  Program	 freezes	

34	

Cheap	 Oracles	
•  Cri+cal	 message	 boxes	
•  Suspicious	 stdout	 /	 stderr	

	

Specifying	 Cheap	 Oracles	
•  Simply	 with	 regular	 Expressions	
•  For	 example:	

	 .*NullPointerExcep+on	
	 	 	 	 	 	 .*|[Ee]rror|[Pp]roblem	

More	 sophis+ca+on	 needs	 work	
•  Ac+ons	

–  Ac+on	 detec+on	
–  Ac+on	 selec+on	
–  Some+mes	 a	 trial/error	 process	

•  Random	 selec+on	 =	 like	 a	 child,	 just	 much	 faster	
•  Prin+ng,	 file	 copying	 /	 moving	 /	 dele+ng	
•  Starts	 other	 Processes	
•  Rights	 management,	 dedicated	 user	 accounts,	 disallow	 ac+ons	

•  Oracles	 that	 need	 programming	

How?	 Edit	 the	 protocol	

38	

The	 protocol	 editor	

40	

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

estT *

protected SUT startSystem() !
 throws SystemStartException!

41	

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

estT *

protected State getState(SUT system) !
 throws StateBuildException!

42	

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

estT *

protected Set<Action> deriveActions(SUT system, !
 State state) !

 throws ActionBuildException!

43	

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

estT *

protected Action selectAction(State state,!
 Set<Action> actions);!
!
!
// Here you can implement any selection strategy!
// per defaults this is random selection from actions!

44	

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

estT *

!
protected boolean executeAction(SUT system, !
 State state, !
 Action action);!
!
!

45	

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

estT *

protected Verdict getVerdict(State state);!

getVerdict!

46	

protected	 Verdict	 getVerdict(State	 state){	
	 	 Assert.notNull(state);	
	

	 //-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	
	 //	 ORACLES	 FOR	 FREE	
	 //-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	

	
	 //	 if	 the	 SUT	 is	 not	 running,	 we	 assume	 it	 crashed	

	
	 if(!state.get(IsRunning,	 false))	
	 	 return	 new	 Verdict(1.0,	 "System	 is	 offline!	 I	 assume	 it	 crashed!");	

	
	 //	 if	 the	 SUT	 does	 not	 respond	 within	 a	 given	 amount	 of	 +me,	 we	 assume	 it	 crashed	

	
	 if(state.get(NotResponding,	 false))	
	 	 return	 new	 Verdict(0.8,	 "System	 is	 unresponsive!	 I	 assume	 something	 is	 wrong!");	

	
	 	 	 	 	 	 	 	 	

public	 final	 class	 Verdict	 {	
	 ….	
	 private	 final	 String	 info;	
	 private	 final	 double	 severity;	
	 private	 final	 Visualizer	 visualizer;	

	
public	 Verdict	 (double	 severity,	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 String	 info)	
public	 Verdict(double	 severity,	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 String	 info,	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Visualizer	 v)	

getVerdict!

47	

//-‐	
//	 ORACLES	 ALMOST	 FOR	 FREE	
//-‐	
	
String	 +tleRegEx	 =	 se}ngs().get(SuspiciousTitles);	

	 	 	
//	 search	 all	 widgets	 for	 suspicious	 +tles	
for(Widget	 w	 :	 state){	

	 String	 +tle	 =	 w.get(Title,	 "");	
	 if(+tle.matches(+tleRegEx)){	
	 	 	 	 	 	
	 	 //	 visualize	 the	 problema+c	 widget,	 by	 marking	 it	 with	 a	 red	 box	
	 	 Visualizer	 visualizer	 =	 U+l.NullVisualizer;	
	 	 if(w.get(Tags.Shape,	 null)	 !=	 null){	
	 	 	 Pen	 redPen	 =	 Pen.newPen().setColor(Color.Red).(…).build();	
	 	 	 visualizer	 =	 new	 ShapeVisualizer(redPen,	 …..,	 "Suspicious	 Title",	 0.5,	 0.5);	
	 	 }	
	 	 return	 new	 Verdict(1.0,	 "Discovered	 suspicious	 widget	 +tle:	 '"	 +	 +tle	 +	 "'.",	 visualizer);	
	 }	

}	
	 	 	
	 	 	

getVerdict!

48	

	 	 	
//-‐	
//	 MORE	 SOPHISTICATED	 ORACLES	 CAN	 BE	 PROGRAMMED	 HERE	 	
//-‐	
	
The	 sky	 is	 the	 limit	 ;-‐)	
	

	 	 	
//	 if	 everything	 was	 ok...	
return	 new	 Verdict(0.0,	 "No	 problem	 detected.",	 U+l.NullVisualizer);;	
	
}	
	

49	

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

Domain Experts

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

calculate
fitness of test

sequence

No

Yes

Action
Definitions

Oracle
Definition

STOP
SUT

SUT

optional
instrumentation

Replayable Erroneous Sequences

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

estT *

protected boolean moreActions(State state);!
protected void finishSequence(File recordedSequence)!
protected boolean moreSequences();!

How	 has	 it	 been	 used?	

50	

MS	 Office	
•  Subject	 applica+on:	 Microso#	 Word	 2011	
•  Robustness	 test:	 random	 ac+on	 selec+on	
•  18	 hour	 run	
•  672	 sequences	 à	 200	 ac+ons	
•  9	 crashes	
•  6	 reproducable	 crashes	
•  Effort	 was	 approx	 1	 hour	 to:	

–  System	 setup	 (loca+on,	 configura+on	 files)	
–  Augment	 Ac+on	 Set	 (Drag	 Sources,	 Drop	 Targets,	 Clicks,	 Double	 Clicks,	

Right	 Clicks,	 Text	 to	 type,	 …)	
–  Configure	 cheap	 oracle	 (crashes,	 +meouts,	 evident	 error	 messages)	

CTE	 XL	 Profesional	

•  CTE	 XL	 Professional	 is	 a	 commercial	 tool	 for	 test	 case	 design	
•  Draw	 a	 combinatorial	 tree	 modeling	 test	 relevant	 aspects	
•  Generate	 a	 set	 of	 abstract	 test	 cases	
•  Java	 applica+on	 -‐	 Eclipse	 Rich	 Client	 Pla�orm	 (RCP)	 using	

Standard	 Widget	 Toolkit	 (SWT)	
•  Developed	 and	 commercialized	 by	 Berner&MaTner	

•  TESTAR	 was	 used	 to	 test	 it.	

52	

Do	 experiments	 with	 more	
sophis+cated	 ac+on	 selec+on	

53	

•  What is a “good” test sequence?
è  One that generates lots of Maximum

Call Stacks (MCS)
•  MCS: root-leaf-path through call tree
•  Intuition: the more MCSs a sequence

generates, the more aspects of the
SUT are tested (McMaster et al.)

•  #MCS = number of leaves
•  Obtainable through bytecode

instrumentation (no source code
needed)

!"#$%&

!'%& !(%& !)%&

!*%&!*%& !'%&

!*%&

+,#$-.$%&

/
/
/

Do	 experiments	 with	 more	
sophis+cated	 ac+on	 selec+on	

•  Select actions in such a way that sequences are formed
that generate large amounts of “Maximum Call Stacks”
within the system under test (SUT)

•  Optimization algorithm used:

–  Ant Colony Optimization

54	

55

Ant Colony Optimization

•  C = component set (here: C = set of feasible actions)
•  The likelihood that is chosen is determined by its

pheromone value pci
•  Generate trails (sequences) by selecting components

according to pheromone values pi
•  Assess fitness of trails (i.e. MSC)
•  Reward components ci that appear in “good” trails by increasing

their pheromones pi

(Upon construction of subsequent trails, prefer components with
high pheromone values)

€

ci ∈C

Initial experiment results

ACO Run

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 1000 2000 3000 4000 5000 6000

#M
C

S

Sequence

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 1000 2000 3000 4000 5000 6000

#M
C

S
Sequence

Random Run

•  Fixed stopping criteria -> 6000 generated sequences

57

Conclusion

•  Implementation works
–  Better than random
–  Solutions improve over time
–  Letting it run unti

•  Efficiency
–  Sequence generation is expensive è parallelization
–  Frequent restarts of the SUT è might not be suitable for large

applications with a significant startup time, e.g. Eclipse
–  ACO good choice?

•  Fault sensitivity? è Empirical evaluation needed

Clave	 InformáCca	

•  We	 met	 this	 company	 at	 some	 local	 test	 event	 in	 Valencia	
•  Clavei	 is	 a	 private	 so#ware	 vendor	 from	 Alicante,	 which	
•  Specialized	 for	 over	 26	 years	 in	 the	 development	 Enterprise	

Resource	 Planning	 (ERP)	 systems	 for	 SMEs.	 	
•  Main	 products	 is	 ClaveiCon	 	 a	 so#ware	 solu+on	 for	 SMEs	 for	

accoun+ng	 and	 financing	 control	
•  Current	 tes+ng	 is	 done	 manually	
•  Amount	 of	 faults	 found	 by	 clients	 is	 too	 high	
•  Tes+ng	 needs	 to	 be	 improved	

Objec+ves	 of	 the	 study	

•  Can	 our	 tool	 be	 useful	 for	 Clave	 Informa+ca?	
•  Can	 it	 help	 them	 be	 more	 effec+ve	 in	 finding	 faults?	
•  Can	 this	 be	 done	 in	 an	 efficient	 way,	 i.e.	 not	 taking	 too	 much	

+me.	
•  Restric+ons:	

–  Clave	 had	 no	 budget	 to	 apply	 the	 tool	 themselves	
–  So	 we,	 the	 tool	 developing	 researchers	 did	 that	

59	

ClaveiCon	

•  WriTen	 in	 Visual	 Basic	
•  Microso#	 SQL	 Server	

2008	 	 database	 	
•  Targets	 the	 Windows	

opera+ng	 systems.	

•  Store	 data	 about	 product	 planning,	 cost,	 development	 and	
manufacturing.	 	

•  Provides	 a	 real+me	 view	 on	 a	 company’s	 processes	 and	 enables	
controlling	 inventory	 management,	 shipping	 and	 payment	 as	 well	
as	 marke+ng	 and	 sales.	

Case	 Study	 Procedure	
	 1)	 Planning	 Phase:	

a)  Implementa+on	 of	 Test	 Environment	
b)  Error	 Defini+on:	 An+cipate	 and	 iden+fy	 poten+al	 fault	 paTerns.	

2)	 Implementa+on	 Phase:	
a)  Oracle	 Implementa+on:	 Implement	 the	 detec+on	 of	 the	 errors	 defined	 in	

the	 previous	 step.	
b)  Ac+on	 Defini+on	 Implementa+on	
c)  Implementa+on	 of	 stopping	 criteria	

3)	 Tes+ng	 Phase:	 run	 the	 test	
4)	 Evalua+on	 Phase:	

a)  Iden+fy	 the	 most	 severe	 problems	 encountered	 during	 the	 run.	 	
b)  The	 collected	 informa+on	 will	 be	 used	 for	 the	 refinement	 of	 the	 setup	

during	 the	 next	 itera+on.	

61	

Results	
•  The	 pre-‐tes+ng	 ac+vi+es:	

–  the	 development	 or	 ac+ons,	 oracles	 and	 stopping	 criteria	 to	 setup	 TESAR	 	
takes	 some	 ini+al	 effort	 (in	 our	 case	 approximately	 26	 hours)	 but	 will	
pay	 off	 the	 more	 o#en	 the	 test	 is	 run.	 	

•  The	 manual	 labor	 associated	 to	 post-‐tes+ng:	
–  inspec+on	 of	 log	 files,	 	
–  reproduc+on	 and	 comprehension	 of	 errors	 	
Are	 only	 a	 +ny	 frac+on	 of	 the	 overall	 tes+ng	 +me	 (we	 spent	 1,5	 hour	 of	
manual	 interven+on	 during	 and	 a#er	 tests,	 compared	 to	 over	 91	 hours	
of	 actual	 unaTended	 tes+ng).	 	

•  TESTAR	 detected	 10	 previously	 unknown	 criCcal	 faults,	 makes	 for	 a	
surprisingly	 posi+ve	 result	 towards	 believing	 that	 TESTAR	 can	 be	 a	
valuable	 and	 resource-‐efficient	 supplement	 for	 manual	 tes+ng.	 	

62	

63	

See	 a	 video	 here:	
hTp://www.pros.upv.es/index.php/es/videos/item/1398-‐testar-‐rogue-‐user	

Sobeam	
•  FITTEST	 partner	 from	 France	
•  Big	 so#ware	 company	
•  SUT	 selected	 for	 evalua+ng	 	
	 	 	 	 	 TESTAR:	 Modelio	 SaaS	

!
•  Modelio	 SaaS:	 	

–  PHP	 web	 applica+on	
–  For	 the	 transparent	 configura+on	 of	 distributed	 environments	 that	 run	

projects	 created	 with	 SOFTEAM’s	 Modelio	 Modeling	 tool	
–  Administrators	 use	 this	 applica+on	 to	 manage	 servers	 and	 projects	 that	

run	 in	 virtual	 environments	 on	 different	 cloud	 pla�orms	

•  Current	 tes+ng	 done	 manually	

Case	 Study	 Procedure	

65	

INTRODUCTORY
COURSE

CONSOLIDATE FINAL
PROTOCOL

RUN THE
PROTOCOL

Level 2:
HANDS ON
LEARNING

TRAINING PHASE

Level 3:
PERFORMANCE

EXAMS

SUCCESS?
YES

SETTING-UP
A WORKING TEST

ENVIRONMENT

Example
SUTS

SOFTEAM

USER
MANUAL

INSTALLING
TOOL

Example
SUTS

 TESTING PHASE

EVALUATE
 TEST RESULTS

NO

TRAINER

PROTOCOL

SUFFICIENT
QUALITY?

YES

NO

WORKING
DIARIES PROTOCOLPROTOCOLPROTOCOL

EVOLUTIONS

LEARNABILITY-
QUESTIONNAIRE (A)

LEARNABILITY-
QUESTIONNAIRE (B)

SATISFACTION-
INTERVIEW

Level 1:
REACTION
EVALUATE

COURSE QUALITY
QUESTIONNAIRE

We	 measured:	
•  Learnability	 (ques+onnaires,	 work-‐diaries,	 performance	 evalua+ons)	
•  Effec+veness	

–  17	 faults	 were	 re-‐injected	 to	 evaluate	
–  Code	 coverage	

•  Efficiency	
–  Time	 for	 set-‐up,	 designing	 and	 develop	
–  Time	 for	 running	 tests	

Results	

3. Reproducibility of the faults detected.

Measuring Subjective Satisfaction is done after the
testing phase has been completed and consists of:

1. Reaction cards session: each subject selects 5 cards
that contain words with which they identify the tool
(for the 118 words used see [4]).

2. Informal interview about satisfaction and perceived
usefulness that is setup around the questions: Would
you recommend the tool to your peers or persuade your
management to invest? If not why? If yes, what argu-
ments would you use?

3. Face questionnaires to obtain information about sat-
isfaction through facial expressions. The informal in-
terview from above will be taped and facial expression
will be observed following the work in [4]. The pur-
pose of the face questionnaire is to complement the
satisfaction interview in order to determine whether
their gestures harmonize with their given answers.

4. DATA COLLECTION
Data collection methods6 included the administration of

two questionnaires, test-based examination, working diaries,
inspection of di↵erent TESTAR protocol artifacts (oracle,
action, stopping), as well as video-taped interviews with the
subjects.

Regarding to the working diaries, the trainees reported
all the activities carried out over the hands-on learning pe-
riod without a pre-established schedule. Table 2 shows the
description data for these activities.

Time reported (min)

Activities S1 S2 In Pairs

Oracle design + impl 1200 30 30
Action definition + impl 820 30 20
Stopping Criteria 30 0 10
Evaluating run results 240 20 30
Skype meeting with trainer 60 10 15

Total time 2350 90 105

Table 2: Self-reported activities during the hands-on

learning process

Figure 3 shows the quality of the di↵erent TESTARs se-
tups, as rated by the trainer. The trainer rated each artifact
of a version separately, i.e. oracle, action set and stopping
criterion on a scale from 0 to 5 as if it was a student sub-
mitted assignment.

Table 3 shows the descriptive values of bot test suites con-
sidered in this study: the existing manual test suite (TS

Soft

)
and the test suite generated by our tool (TS

Testar

).
During the study we have used two questionnaires. The

first is the questionnaire that evaluates the quality of the
training course: its contents, the allocated time, and the
provided materials. This questionaire contains one item in
5-points ordinal scale and six items in 5-points likert scale.

The learnability questionnaire is used to measure per-
ceived learnability of the tool. The same questionnaire is
applied at point A, after the course but before the hands-on

6All materials can be found here: https://staq.dsic.upv.
es/papers/softeam-TESTAR/index.html

Figure 3: Evolution of artifact quality as rated by

the trainer

Description

Test Suite

TS

Soft

TS

Testar

Faults discovered 14 + 1 10 + 1
Did not find IDs 1, 9, 12 1,4,8,12,14,15,16
Code coverage 86.63% 70.02%
Time spent on development 40h 36h
Run time manual automated

1h 10m 77h 26m
Faults diagnosis and report 2h 3h 30m
Faults reproducible 100% 91.76%
Number of test cases 51 dynamic

Table 3: Comparison between tests

learning, and at point B, after the hands-on learning. The
questions have been taken from [9] where the authors are
analyzing the learnability of CASE tools. They have been
divided into 7 categories to separate di↵erent aspects of the
tool. It consists of 18 items in 5-points likert scale.

5. ANALYSIS
RQ1: How learnable is the TESTAR tool when it is used by
testing practitioners of SOFTEAM?
Empirical data was collected in order to analyze learnabil-

ity at the three identified di↵erent levels.
Reaction (level 1) - Responses from two questionnaires

about first impressions of the course (quality and learnability
(A)) and another one applied after the test exam (learnabil-
ity B) were analyzed. With respect to the course (at level
1), both respondents showed to be satisfied with the content
of the course, and the time allocated for it. The practical
examples during the course were perceived as very useful to
understand the GUI testing concepts. Both subject S1 as
S2 highlighted that it was very easy to get started and to
learn how to first approach the use of the tool through the
provided user manual, the testers were able to use the basic
functionalities of tool right from the beginning and liked the
friendliness and cleanness of the environment.
Learning (Level 2) - If we look at the self-reported ac-

tivities during the hands-on process in Table 2 we see that
subject 1 spend considerable more time than subject 2. This
was due to unforeseen workload of S2 that in industrial en-

the study was very useful for technology transfer purposes:
some remarks during the informal interview indicate that
the tool would not have been evaluated in so much depth if
it would not have been backed up by our case study design.
Also, having only two real subjects available, this study took
a month to complete and hence we overcame the problem of
getting too much information too late. Finally, we received
valuable feedback on how to evolve the tool and its related
documentation and course materials.

The following were the results of the case study:
1) The SOFTEAM subjects found it very easy to get

started with the tool and to learn how to use the tool’s
default behaviour (i.e. free oracles and random actions)
through the provided user manual, the testers were able to
use the basic functionalities of tool right from the beginning
and liked the friendliness and cleanness of the environment.

2) Programming more sophisticated oracles customizing
the Java protocol raised some problems during the learn-
ing process of the SOFTEAM subjects. The problems were
mainly related to the understanding of the role of oracles
in automated testing. In the end, in pairs and with the
guidance of the trainer, the subjects were capable to pro-
gram the tool in such a way that it detected a fair amount
of injected faults. This gives insight into the training ma-
terial and the user manual that needs to be improved and
concentrate more on giving examples and guidance on more
sophisticated oracles. Also, we might need to research and
develop a wizard that can customize the protocol without
Java programming.

3) The e↵ectiveness and e�ciency of the automated tests
generated with TESTAR can definitely compete with that of
the manual tests of SOFTEAM. The subjects felt confident
that if they would invest a bit more time in customizing the
action selection and the oracles, the TESTAR tool would
do as best or even better as their manual test suite w.r.t.
coverage and fault finding capability. This could save them
the manual execution of the test suite in the future.

4) The SOFTEAM subjects found the investment in learn-
ing the TESTAR tool and spending e↵ort in writing Java
code for powerful oracles worthwhile since they were sure
this would pay o↵ the ore often the tests are run in an au-
tomated way. They were satisfied with the experience and
were animated to show their peer colleagues. To persuade
management and invest some more in the tool (for example
by doing follow-up studies to research how good the auto-
mated tests can get and how re-usable they are amongst
versions of the SUT) was perceived as di�cult. Neverthe-
less, enthusiasm to try was definitely detected.

In summary, despite criticism regarding the documenta-
tion and installation process of the tool, the testers’ reactions
and statements encountered during the interviews and the
face questionnaire, indicate that they were satisfied with the
testing experience. We came to a similar conclusion regard-
ing the tool’s learnability. Although, the trainer reported
certain di�culties with the action set definition, the con-
stant progress and increase of artefact quality during the
case study, points to an ease of learnability. These items
will be improved in future work to enhance the tool.

8. REFERENCES
[1] A. Bagnato, A. Sadovykh, E. Brosse, and T.E.J. Vos.

The omg uml testing profile in use–an industrial case
study for the future internet testing. In Software

Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, pages 457–460, 2013.

[2] S. Bauersfeld, A. de Rojas, and T. E. J. Vos.
Evaluating rogue user testing in industry: an
experience report. In Proceedings of 8th International
Conference RCIS. IEEE, 2014.

[3] S. Bauersfeld and T. E. J. Vos. Guitest: a java library
for fully automated gui robustness testing. In Proc of
the 27th IEEE/ACM ASE 2012, pages 330–333.

[4] J. Benedek and T. Miner. Measuring desirability: New
methods for evaluating desirability in a usability lab
setting. Proceedings of Usability Professionals
Association, Orlando, USA, 2002.

[5] T. Grossman, G. Fitzmaurice, and R. Attar. A survey
of software learnability: Metrics, methodologies and
guidelines. In SIGCHI Conference on Human Factors
in Computing Systems, pages 649–658. ACM, 2009.

[6] Warren Harrison. Editorial (N=1: an alternative for
software engineering research). Empirical Software
Engineering, 2(1):7–10, 1997.

[7] B. Kitchenham, L. Pickard, and S.L. Pfleeger. Case
studies for method and tool evaluation. Software,
IEEE, 12(4):52 –62, July 1995.

[8] P.M. Kruse, N. Condori-Fernandez, T.E.J. Vos,
A. Bagnato, and E. Brosse. Combinatorial testing tool
learnability in an industrial environment. In ESEM
2013, pages 304–312, Oct 2013.

[9] M. Senapathi. A framework for the evaluation of case
tool learnability in educational environments. Journal
of Information Technology Education: Research,
4(1):61–84, January 2005.

[10] A. Zendler, E. Horn, H. Schwartzel, and E. Plodereder.
Demonstrating the usage of single-case designs in
experimental software engineering. Information and
Software Technology, 43(12):681 – 691, 2001.

APPENDIX
Faces were rated with a scale from 1 to7 where 1 represented ”Not
at all” and 7 represented ”Very much”.

Would you recommend Could you pursuade
the tool to your colleagues? your management to invest?
1 2 3 4 5 6 7

X
1 2 3 4 5 6 7

X

Would you recommend Could you pursuade
the tool to your colleagues? your management to invest?
1 2 3 4 5 6 7

X
1 2 3 4 5 6 7

X

Acknowledgements
This work was financed by the FITTEST project, ICT-
2009.1.2 no 257574.

the study was very useful for technology transfer purposes:
some remarks during the informal interview indicate that
the tool would not have been evaluated in so much depth if
it would not have been backed up by our case study design.
Also, having only two real subjects available, this study took
a month to complete and hence we overcame the problem of
getting too much information too late. Finally, we received
valuable feedback on how to evolve the tool and its related
documentation and course materials.

The following were the results of the case study:
1) The SOFTEAM subjects found it very easy to get

started with the tool and to learn how to use the tool’s
default behaviour (i.e. free oracles and random actions)
through the provided user manual, the testers were able to
use the basic functionalities of tool right from the beginning
and liked the friendliness and cleanness of the environment.

2) Programming more sophisticated oracles customizing
the Java protocol raised some problems during the learn-
ing process of the SOFTEAM subjects. The problems were
mainly related to the understanding of the role of oracles
in automated testing. In the end, in pairs and with the
guidance of the trainer, the subjects were capable to pro-
gram the tool in such a way that it detected a fair amount
of injected faults. This gives insight into the training ma-
terial and the user manual that needs to be improved and
concentrate more on giving examples and guidance on more
sophisticated oracles. Also, we might need to research and
develop a wizard that can customize the protocol without
Java programming.

3) The e↵ectiveness and e�ciency of the automated tests
generated with TESTAR can definitely compete with that of
the manual tests of SOFTEAM. The subjects felt confident
that if they would invest a bit more time in customizing the
action selection and the oracles, the TESTAR tool would
do as best or even better as their manual test suite w.r.t.
coverage and fault finding capability. This could save them
the manual execution of the test suite in the future.

4) The SOFTEAM subjects found the investment in learn-
ing the TESTAR tool and spending e↵ort in writing Java
code for powerful oracles worthwhile since they were sure
this would pay o↵ the ore often the tests are run in an au-
tomated way. They were satisfied with the experience and
were animated to show their peer colleagues. To persuade
management and invest some more in the tool (for example
by doing follow-up studies to research how good the auto-
mated tests can get and how re-usable they are amongst
versions of the SUT) was perceived as di�cult. Neverthe-
less, enthusiasm to try was definitely detected.

In summary, despite criticism regarding the documenta-
tion and installation process of the tool, the testers’ reactions
and statements encountered during the interviews and the
face questionnaire, indicate that they were satisfied with the
testing experience. We came to a similar conclusion regard-
ing the tool’s learnability. Although, the trainer reported
certain di�culties with the action set definition, the con-
stant progress and increase of artefact quality during the
case study, points to an ease of learnability. These items
will be improved in future work to enhance the tool.

8. REFERENCES
[1] A. Bagnato, A. Sadovykh, E. Brosse, and T.E.J. Vos.

The omg uml testing profile in use–an industrial case
study for the future internet testing. In Software

Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, pages 457–460, 2013.

[2] S. Bauersfeld, A. de Rojas, and T. E. J. Vos.
Evaluating rogue user testing in industry: an
experience report. In Proceedings of 8th International
Conference RCIS. IEEE, 2014.

[3] S. Bauersfeld and T. E. J. Vos. Guitest: a java library
for fully automated gui robustness testing. In Proc of
the 27th IEEE/ACM ASE 2012, pages 330–333.

[4] J. Benedek and T. Miner. Measuring desirability: New
methods for evaluating desirability in a usability lab
setting. Proceedings of Usability Professionals
Association, Orlando, USA, 2002.

[5] T. Grossman, G. Fitzmaurice, and R. Attar. A survey
of software learnability: Metrics, methodologies and
guidelines. In SIGCHI Conference on Human Factors
in Computing Systems, pages 649–658. ACM, 2009.

[6] Warren Harrison. Editorial (N=1: an alternative for
software engineering research). Empirical Software
Engineering, 2(1):7–10, 1997.

[7] B. Kitchenham, L. Pickard, and S.L. Pfleeger. Case
studies for method and tool evaluation. Software,
IEEE, 12(4):52 –62, July 1995.

[8] P.M. Kruse, N. Condori-Fernandez, T.E.J. Vos,
A. Bagnato, and E. Brosse. Combinatorial testing tool
learnability in an industrial environment. In ESEM
2013, pages 304–312, Oct 2013.

[9] M. Senapathi. A framework for the evaluation of case
tool learnability in educational environments. Journal
of Information Technology Education: Research,
4(1):61–84, January 2005.

[10] A. Zendler, E. Horn, H. Schwartzel, and E. Plodereder.
Demonstrating the usage of single-case designs in
experimental software engineering. Information and
Software Technology, 43(12):681 – 691, 2001.

APPENDIX
Faces were rated with a scale from 1 to7 where 1 represented ”Not
at all” and 7 represented ”Very much”.

Would you recommend Could you pursuade
the tool to your colleagues? your management to invest?
1 2 3 4 5 6 7

X
1 2 3 4 5 6 7

X

Would you recommend Could you pursuade
the tool to your colleagues? your management to invest?
1 2 3 4 5 6 7

X
1 2 3 4 5 6 7

X

Acknowledgements
This work was financed by the FITTEST project, ICT-
2009.1.2 no 257574.

•  Some	 difficul+es/resistance/
misunderstanding	 during	 the	
learning	 of	 programming	 for	
powerful	 oracles	

•  Tes+ng	 ar+facts	 produced	
increased	 in	 quality	
–  Red	 =	 Oracle	
–  Green	 =	 Ac+on	 Set	
–  Blue	 =	 Stopping	 Criteria	

3. Reproducibility of the faults detected.

Measuring Subjective Satisfaction is done after the
testing phase has been completed and consists of:

1. Reaction cards session: each subject selects 5 cards
that contain words with which they identify the tool
(for the 118 words used see [4]).

2. Informal interview about satisfaction and perceived
usefulness that is setup around the questions: Would
you recommend the tool to your peers or persuade your
management to invest? If not why? If yes, what argu-
ments would you use?

3. Face questionnaires to obtain information about sat-
isfaction through facial expressions. The informal in-
terview from above will be taped and facial expression
will be observed following the work in [4]. The pur-
pose of the face questionnaire is to complement the
satisfaction interview in order to determine whether
their gestures harmonize with their given answers.

4. DATA COLLECTION
Data collection methods6 included the administration of

two questionnaires, test-based examination, working diaries,
inspection of di↵erent TESTAR protocol artifacts (oracle,
action, stopping), as well as video-taped interviews with the
subjects.

Regarding to the working diaries, the trainees reported
all the activities carried out over the hands-on learning pe-
riod without a pre-established schedule. Table 2 shows the
description data for these activities.

Time reported (min)

Activities S1 S2 In Pairs

Oracle design + impl 1200 30 30
Action definition + impl 820 30 20
Stopping Criteria 30 0 10
Evaluating run results 240 20 30
Skype meeting with trainer 60 10 15

Total time 2350 90 105

Table 2: Self-reported activities during the hands-on

learning process

Figure 3 shows the quality of the di↵erent TESTARs se-
tups, as rated by the trainer. The trainer rated each artifact
of a version separately, i.e. oracle, action set and stopping
criterion on a scale from 0 to 5 as if it was a student sub-
mitted assignment.

Table 3 shows the descriptive values of bot test suites con-
sidered in this study: the existing manual test suite (TS

Soft

)
and the test suite generated by our tool (TS

Testar

).
During the study we have used two questionnaires. The

first is the questionnaire that evaluates the quality of the
training course: its contents, the allocated time, and the
provided materials. This questionaire contains one item in
5-points ordinal scale and six items in 5-points likert scale.

The learnability questionnaire is used to measure per-
ceived learnability of the tool. The same questionnaire is
applied at point A, after the course but before the hands-on

6All materials can be found here: https://staq.dsic.upv.
es/papers/softeam-TESTAR/index.html

Figure 3: Evolution of artifact quality as rated by

the trainer

Description

Test Suite

TS

Soft

TS

Testar

Faults discovered 14 + 1 10 + 1
Did not find IDs 1, 9, 12 1,4,8,12,14,15,16
Code coverage 86.63% 70.02%
Time spent on development 40h 36h
Run time manual automated

1h 10m 77h 26m
Faults diagnosis and report 2h 3h 30m
Faults reproducible 100% 91.76%
Number of test cases 51 dynamic

Table 3: Comparison between tests

learning, and at point B, after the hands-on learning. The
questions have been taken from [9] where the authors are
analyzing the learnability of CASE tools. They have been
divided into 7 categories to separate di↵erent aspects of the
tool. It consists of 18 items in 5-points likert scale.

5. ANALYSIS
RQ1: How learnable is the TESTAR tool when it is used by
testing practitioners of SOFTEAM?
Empirical data was collected in order to analyze learnabil-

ity at the three identified di↵erent levels.
Reaction (level 1) - Responses from two questionnaires

about first impressions of the course (quality and learnability
(A)) and another one applied after the test exam (learnabil-
ity B) were analyzed. With respect to the course (at level
1), both respondents showed to be satisfied with the content
of the course, and the time allocated for it. The practical
examples during the course were perceived as very useful to
understand the GUI testing concepts. Both subject S1 as
S2 highlighted that it was very easy to get started and to
learn how to first approach the use of the tool through the
provided user manual, the testers were able to use the basic
functionalities of tool right from the beginning and liked the
friendliness and cleanness of the environment.
Learning (Level 2) - If we look at the self-reported ac-

tivities during the hands-on process in Table 2 we see that
subject 1 spend considerable more time than subject 2. This
was due to unforeseen workload of S2 that in industrial en-

Student	 course	

•  Course:	 1st	 year	 Master	
•  “Developing	 Quality	 So#ware”	
•  34	 students	 working	 in	 groups	 of	 2	
•  Introduc+on:	 10	 minutes	
•  Going	 through	 the	 user	 manual	 (10	 pages)	 while	 doing	 a	 small	

exercise	 on	 a	 calculator:	 50	 minutes	
•  A#er	 1	 hour	 the	 students	 were	 se}ng	 up	 tests	 for	 MS	 paint	

Future	 Work	
•  S+ll	 lot	 that	 needs	 to	 be	 done!	
•  Accessibility	 API	 works	 if	 UI	 has	 been	 programmed	 “well”	
•  Research	 more	 search-‐based	 approaches	 for	 ac+on	 selec+on	
•  Research	 the	 integra+on	 of	 other	 test	 case	 genera+on	

techniques	 (model-‐based,	 combinatorial-‐based)	 for	 ac+on	
selec+on	

•  Design	 a	 test	 spec	 language	 that	 makes	 it	 possible	 to	 specify	
ac+ons	 and	 oracles	 without	 programming	 Java	

•  Do	 more	 industrial	 evalua+ons	 to	 compare	 maintenance	 costs	
during	 regression	 tes+ng	 with	 our	 tool	 and	 capture/replay	 or	
visual	 tes+ng	 tools	

•  Extend	 the	 tool	 beyond	 PC	 applica+ons	 (for	 now	 we	 have	 Mac	
and	 Windows	 plug-‐ins)	 to	 mobile	 pla�orms	

68	

•  Tanja	 E.	 J.	 Vos	
•  email:	 tvos@pros.upv.es	
•  skype:	 tanja_vos	
•  web:	 hTp://tanvopol.webs.upv.es/	
•  telephone:	 +34	 690	 917	 971	 	
	

