Assessment

and Evolution of Safety-Critical
Cyber-Physical Product Families

Leon Moonen

SATToSE 2014

simula - by thinking constantly about it

- by thinking constantly about it

Safety monitoring and control systems

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 2

- by thinking constantly about it

Safety monitoring and control systems

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 3

Safety monitoring and control systems

- by thinking constantly about it

Safety monitoring and control systems

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 5

simula - by thinking constantly about it

Component-based development

L
ARRRAARRR

= product family, mostly “one off’ products

= compose safety logic for particular installation
by configuring a network of standard modules

= clear separation of concerns, well-defined interfaces

» proprietary component composition framework
- runtime environment for communication/synchronization etc.
- ‘“statically” configured using XML files that describe
component instantiation, initialization and interconnections

= other characteristics:

- components: MISRA-compliant C code
- developed over 15-20 years

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 6

simula - by thinking constantly about it

Evolving requirements...

= customer specific options add crosscutting control logic

- inhibit, override, acknowledgements, manual operation via
screens ...

= additions to scale up the safety logic:

- cascading modules to handle more input %5,
or output ports than originally foreseen %
—5

Ny Ll

- cascading configurations to connect the safety

logic of related hazard areas :EF_E]:'_{E__

SATToSE 2014, L'Aquila, Italy

© 2014 Leon Moonen

simula - by thinking constantly about it

Problem statement

increasingly complex configurations make it hard to
understand and reason about system behavior

can we provide source based evidence that a given
actuator is triggered by the correct sensors?

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 8

simula - by thinking constantly about it

Tracking information flow

“find source based evidence that a given
actuator is triggered by the correct sensors?”

< IS there information flow from
the desired sensors to the selected actuator?

< are the desired sensors (input ports)

part of the backward program slice
for the selected actuator (output port)?

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 9

simula - by thinking constantly about it

Program slicing

= program slice: set of programs points (‘statements’) that
may affect values at point of interest (aka slicing criterion)

void main () {

{ =1;°°°

sum = add(sum, 1);

| i = add(i, 1); Gam) (D) @@

printf ("sum = %d\n", sum) ;ft;actuator’
printf ("i = %d\n", i); *°© o~ egerd

static int add(int a, int b) { @ add$return

return a + b;

°

It

program dependence graph [src: CodeSurfer help]

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 10

simula - by thinking constantly about it

Overall approach
source —_— g
model —_— Eepository — presentation
extraction
Y't,.. T l “““
_+*"feedback
feedback .., knowledge | «°
inference
create program track information flow visualize at
dependence model trough system appropriate level

from artifacts using program slicing for our users

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 11

simula - by thinking constantly about it

Challenge: heterogeneous systems

’&v <
= systems are not just set of components %i“—! 4

- actual behavior depends on composition & configuration E

- literature focuses on analysis of homogeneous systems

= [ittle work that crosses language boundaries / incorporate information
from composition or coordination technology in analysis

% existing technology is programming language specific

é no support for “external” artifacts

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 12

- by thinking constantly about it

Challenge: heterogeneous systems

void main() {
int sum, I;

while (i<11){
sum = add (sum)

i = add(i, 1);

void main() {
int sum, I;

while (i<11){
sum = add (sum)

i = add(i, 1);

void main() (
int sum, I;
while (i<11){
sum = add (sum)
i = add(i, 1);

void main() {
int sum, I;

while) {
sum = a
i = add (i

voter.c

input.c

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 13

simula - by thinking constantly about it

Challenge: heterogeneous systems
v3<

- actual behavior depends on composition & conflguratlon

A

M5 g

= system is not just set of components —%
- literature focuses on analysis of homogeneous systems

= [ittle work that crosses language boundaries / incorporate information
from composition or coordination technology in analysis

57 existing technology is programming language specific

// 11 b} H
77 no support for “external” artifacts

= our solution: reverse engineer one system-wide model

from the various source and configuration artifacts
- Iincremental approach, model merging to combine parts

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 14

simula - by thinking constantly about it

Build on (&1} 1[e’'s ADM and KDM

= Architecture Driven Modernization

- extend model driven architecture
to existing software systems

Analysis

B —

Integration
< —-
Analysis

- set of standards for exchanging o

- - Model
(meta-)data about existing systems

Integration e

- use for analysis, visualization,
refactoring and transformation

Integration
Model

Parser

Model
= “traditionally”
- many independent tools / techniques
- unique strengths, also unique gaps
- no choice but to use several tools disjoint analysis islands;
- language & platform dependencies result of silo tool design

Parser

Parser

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 15

simula - by thinking constantly about it

Knowledge Discovery Metamodel (KDM)

Infrastructure layer
Abstractions layer

Program Elements layer

Resource layer

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 16

simula - by thinking constantly about it

“From silo solutions to KDM ecosystems”

Parser

Analysis

—
Integration .

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 17

simula - by thinking constantly about it

InventoryModel CodeModel

! f

*

AbstractinventoryElement AbstractCodeElement ﬁowner

1 1
1 1
| |
1 1
1 1
1 |
1 1
| |
1 1
1 1
: ActionElement K :
1 Inventoryltem Codeltem /}1 /\t1 I
1 rom (0] 1
Y A S A or o v
' v
: Configuration ComputationalObject ActionRelationship <\ :
I ¢ \ !
1 . 1
SourceFile 4 T \
! | o CallableUnit Vo
, I 4 fle A V.. allableUni <stereotype~ -
Co // SourceRef 7 ControlDependence v
1 | ” 4 1
| / I 7’ U
| 7 - . «St t »

: I '\ SourceRegion region / / CompllatlonUnlt (Datzgtra%c;r}:g:nce || :
‘- ‘i’ R | N o Ao \ N N v
PR P S N---————-- L T . - - - - - I
: \ “\ (‘l’ ControlDependence ! " :
|

: SourceFile l \ CompilationUnit to \ %]!
: // \\ 0.* DataDependence | 7/ :
h / I

: N from o P 7 !
I Line# J Virom - !
: . V4 :
: -« PDG Oﬁ ProgramPoint :
| % A . |
1 |
\ 1

- e mm e mm o mm mm mm mm e mm o mm mm mm mm mm Em e mm mm mm mm mm mm mm mm e mm e mm mm mm mm e mm e mm e mm mm mm mm e mm e mm e mm e e mm e = e = =

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 18

simula - by thinking constantly about it

Model reconstruction approach

rFrmmm - /™ i e 1 -
—
C —
source code > C
‘é Analysis Tool 3
Source Code
c L. > Models
++ CDGs
source code > G+ . ()

\f/— Analysis Tool T
% 3

[) | :
! Java 1 PP . : System-wide
' ' Java Integrate =1 Dependence
I source code | Li- :
l\‘/-a [>:L Analysis Tool X Graph (KDM)

SEoo oI

-
Configuration | | _ _ _)
artifacts - Configuration - Configuration
Analysis Tool Model
Heterogeneous Homogeneous
Sources Model Recovery Model Integration Model

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 19

simula - by thinking constantly about it

Model integration (merging)

port-instance

. data dependency
O port instance >
first use intercomponént

program point 9ata dependency

last may-kill port-type
ComponentC / program point date dependency

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 20

simula - by thinking constantly about it

System-wide information flow tracking

(essmenrn

£41

! U\

oEér#

o
N
Ans

sensor#2

e op

vot

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 21

simula - by thinking constantly about it

Precision and scalability

= precision: identical results as CodeSurfer
- created identical component based and integrated versions
- random selection of slicing criteria, compared slices

* linear scaling w.r.t. LOC

System A B C D
omponents

Comp 4 6 30 60

LOC 207 16181 54053 101393

> CodeSurfer CDG generation times (sec.) | 3.181 13.064 65.022 132.381

Model transformation time (sec.) 0.246 1.996 9.938 19.755
Nodes (KDM SDG) 2074 13787 61507 121197
Dependencies (KDM SDG) 3784 46276 216956 431042

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 22

simula - by thinking constantly about it

Precision and scalability

20 SDG construction time (sec.) —+— 2 < 120000
Size of final SGD (#nodes) — x — ~"D
- 100000
15
8 @
8 - 80000 3
2 2
£ &
P m)
.8 (O]
g 10 - 60000 &
2 ©
® £
C S
S ©
© N
23 - 40000 o
5
- 20000
0 | | | | | 0

0 20000 40000 60000 80000 100000
System size (LOC)

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 23

simula - by thinking constantly about it

Using information flow for software
certification and comprehension

» /nformation flow can be computed from dependence
graph using graph traversal (cf. program slicing)

= raw information flow is too detailed

* need to present at appropriate level of detail for users:

- Ssafety domain experts: need system level and inter-component
views but treat components as black boxes

- developers: need inter- and intra-component abstractions that
allow them to drill down to relevant source code

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 24

simula - by thinking constantly about it

Interlude: capturing safety knowledge

= at highest lever, the desired overall safety behavior for
system is recorded as so called cause and effect matrix

S, S, ...|S,
A,
4, [N
An

- based on discussions between customer and safety expert
(variant on requirements elicitation)

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 25

simula - by thinking constantly about it

Show information flow to safety experts

* dependency matrices at system and component level

- provides survey info A s = LT
, E C‘ 1 1 I
- system level should correspond to A S B g CAEIEIL.
cause and effect matrix used by A, -Fo.
safety expert to specify desired behavior Stel- []
o,
* inter-component information flow
- “slice through system” to : 1
show which sensor signals 1™ iy -
trigger given actuator TV ——{ouE
TN =Im 1 7
- detail for safety expert, 1™ E S Ll S I =
survey info for developer] M E {Ou2E
1 In3 | 1S E

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 26

simula - by thinking constantly about it

Show information flow to developers

* intra-component information flow
- “slice through component”, shows conditional flow to output port

- -
I Input !
Ulnput | ____ o
i Port 1
-0. Param->Previnhibitin| I0Err! = FALSE
ALType & 0x08
C - a-t | getChkSum(AL)
1 “onaiuon o _ __ ~» [AlarmVal I= ErrValue|——»[AlarmVal < + 0.0001 finhibitCntr < MAX_IDLE] + /

1 C I ause 1 ManualOverride etChSum(AL) != CheckSum|
DprMode == MANUAL]

I0Err = FALSE

Chk LVaIue >0

Param->AckALL
ChkSumIN == getCheckSum(pram->InputVal)
param->IOErr = FALSE

Param->LowSetFlag | AlarmVal <= Param->Limit]| Param->InhibitOut

| ((AlarmStat != DisableALL) && (Measure == TRUE)) | Param->instance & DISPLAYOUT|
[P

GlobalResetStat
PrevGlobalResetStat

revAlarmStat == AlarmStat|

Param->instance & DISPLAYOUT]| Param-> InhibitOut

\

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 27

simula - by thinking constantly about it

Five task-specific, interconnected,
layers of abstraction:

system level inter-component
- cause & effect network diagram -
#include <stdio.h> effect
#include “system_def.h” S — component
inter-component
int main (void) { information flow
while (under(NDA)) {
printf(“nothing to see here\n”); e component -
} cause & effect
return(0);
effect
} (R, intra-component
info flow
main navigation \|,C°”diti°”

structure
source code

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 28

simula - by thinking constantly about it

Genericity

* reverse engineered system-wide dependence graph
can be used for all analyses based on PDG/SDG

= configuration analysis specific to Kongsberg Maritime
component framework configuration artifacts (XML)
- mostly parsing, also implemented Java / Spring version

= our slicer is specific to KDM-based SDGs, not application
- planned experiment with injecting our SDG back into CodeSurfer

= nformation flow visualization aimed at KM tasks

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 29

- by thinking constantly about it

@

= exploratory, qualitative study A
- 6 participants: developer / system integrator / safety expert

User evaluation

= structured interview with each participant (60-90min)
- 30 Likert-scale questions and 6 open questions
- researcher-administered, to stimulate discussion and Q&A
- transcribed & analyzed using open and axial coding

= overall feedback positive: intuitive, low learning curve
= various suggestions for refinement and extensions

» system integrator and safety experts: “what we actually
need is impact analysis on complete product family”
- retrofitting team: “backporting” changes to existing installations

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 30

simula - by thinking constantly about it

What’s next? Guiding evolution!

= support evolution of the product family
(taking existing product installations into account)

< re-certification of modified components is costly
- a cost-effective evolution strategy minimizes the amount
of re-certification needed

» need an objective way to compare different evolution
‘'scenarios’ before actually making the changes

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 31

simula - by thinking constantly about it

Towards evidence-based
evolution recommendations

1. reverse engineer dependence models representing
products and families (mega-modelling)

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 32

.research laboratory |

System -wide product dependence graph (SPDG)

Prod,.Comp
o1

ComponentC Component N Component B

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy

33

simula - by thinking constantly about it

Family
Dependence
Graph (FDG)

= combine SPDGs for all

products in family
- share components

= enrich with component
summary edges to
‘cache’ component level
information flow

.. o
:\& N

Y

= annotate with aftributes
(e.g., slice size)

Product B Prodg.Compg

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 34

Towards evidence-based
ndations

evolution recomme

1. reverse engineer dependence models representing
products and families (mega-modelling)

2. define scalable and precise impact analysis of change
scenarios (managing safe approximations is challenge)

3. develop method to quantify and compare impact
(working assumption: use slice size as quantifier)

4. use constraint programming to select evolution strategy
that minimizes impact (hence re-certification efforts)

» recommendation engine for evolution

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 35

- by thinking constantly about it

Questions &
Discussion

Leon Moonen
leon.moonen@computer.org
http://leonmoonen.com/

© 2014 Leon Moonen SATToSE 2014, L'Aquila, Italy 36

