
USAGE CONTRACTS
KIM MENS
UNIVERSITÉ CATHOLIQUE DE LOUVAIN (UCL)

 SATTOSE 2014 – L’AQUILA – 9-11.07.2014

JOINT WORK WITH ANGELA LOZANO & ANDY KELLENS

SOME OF MY
RESEARCH INTERESTS

Programming languages

Context-Oriented Programming

Language interoperability between logic and OO

(Aspect-oriented programming ✞)

Tool support for software development, maintenance and evolution

source code mining

source-code based recommendation tools

structural source-code regularities (e.g. usage contracts)

USAGE CONTRACTS : MOTIVATION
Often you find code comments like

!

!

!

!

!

!

!

!

!

!

/**
 * Deactivates the tool. This method is called whenever the user switches to another tool
 * Use this method to do some clean-up when the tool is switched.
 * Subclassers should always call super.deactivate.
 * An inactive tool should never be deactivated.
 */
public void deactivate() {

if (isActive()) {
if (getActiveView() != null) {

getActiveView().setCursor(new AWTCursor(java.awt.Cursor.DEFAULT_CURSOR));
}
getEventDispatcher().fireToolDeactivatedEvent();

}
}

USAGE CONTRACTS : MOTIVATION
Often you find code comments like

!

!

!

!

We studied JHotDraw for occurrences of “should, may, must, can(not), could,
ought, have, has, need, require, ….” and found 22 structural regularities like :

!

!

!

!

!

/**
 * Deactivates the tool. This method is called whenever the user switches to another tool
 * Use this method to do some clean-up when the tool is switched.
 * Subclassers should always call super.deactivate.
 * An inactive tool should never be deactivated.
 */
public void deactivate() {

if (isActive()) {
if (getActiveView() != null) {

getActiveView().setCursor(new AWTCursor(java.awt.Cursor.DEFAULT_CURSOR));
}
getEventDispatcher().fireToolDeactivatedEvent();

}
}

subclassers of this class should call …
this class should not do a supercall

… must implement …
should (not) override

methods in this class … only be called by …
this method only be called internally

be called after …

USAGE CONTRACTS : GOAL

We want a tool that allows encoding such regularities and offering immediate
feedback on violations of such structural source-code regularities

The tool should be proactive (violations reported ‘on the fly’ during coding)

The tool should be “developer-friendly” (like unit testing but for usage expectations)

desired regularities expressed in the same programming language

tight integration with the integrated development environment

not coercive

/**
 * Deactivates the tool. This method is called whenever the user switches to another tool
 * Use this method to do some clean-up when the tool is switched.
 * Subclassers should always call super.deactivate.
 * An inactive tool should never be deactivated.
 */
public void deactivate() {

if (isActive()) {
if (getActiveView() != null) {

getActiveView().setCursor(new AWTCursor(java.awt.Cursor.DEFAULT_CURSOR));
}
getEventDispatcher().fireToolDeactivatedEvent();

}
}

METAPHOR

Provider

Consumer

uses

Usage
Contract

describes
expectations

of

should
comply
with

EXAMPLE

copyFrom: anEntity within: aVisitor

copyFrom: anEntity within: aVisitor
 super copyFrom: anEntity within: aVisitor
 ...

inherits
from

All overriders of
copyFrom:within:
should start with a
super call

describes
expectations

of

should
comply

with

EXAMPLE

copyFrom: anEntity within: aVisitor

copyFrom: anEntity within: aVisitor
 super copyFrom: anEntity within: aVisitor
 ...

inherits
from

All overriders of
copyFrom:within:
should start with a
super call

describes
expectations

of

should
comply

with

classesInFAMIXSourcedEntityHierarchy
copyFromWithinWithCorrectSuperCall

FAMIXSourcedEntityContract

EContract

classesInFAMIXSourcedEntityHierarchy
 <liableHierarchy:#FAMIXSourcedEntity>

copyFromWithinWithCorrectSuperCall
 <selector:#copyFrom:within:>
contract
 require:
 condition beginsWith:
 (condition doesSuperSend: #copyFrom:within:)
 if: (condition isOverridden)

Liable
entity

Contract
term

Contract
conditions

UCONTRACTS : THE LANGUAGE

classesInFAMIXSourcedEntityHierarchy
copyFromWithinWithCorrectSuperCall

FAMIXSourcedEntityContract

EContract

classesInFAMIXSourcedEntityHierarchy
 <liableHierarchy:#FAMIXSourcedEntity>

copyFromWithinWithCorrectSuperCall
 <selector:#copyFrom:within:>
contract
 require:
 condition beginsWith:
 (condition doesSuperSend: #copyFrom:within:)
 if: (condition isOverridden)

Liable
entity

Contract
term

Contract
conditions

Liable classes
•liableClass: regExp / exceptClass: regExp
•liableHierarchy: className / exceptHierarchy: className
•liablePackage: regExp / exceptPackage: regExp

Liable methods
•selector: regExp / exceptSelector: regExp
•protocol: regExp / exceptProtocol: regExp
•/ exceptClass: className selector: selector

Contract terms
•require: condition
•suggest: condition
•require: condition if: anotherCondition
•suggest: condition if: anotherCondition

Contract conditions
•assigns: regExp
•calls: regExp
•references: regExp
•returns: expression
•doesSuperSend: regExp
•doesSelfSend: regExp
•inProtocol: regExp
•isOverridden: selector
•isOverridden
•isImplemented: selector
•custom: visitor

!
•and: cond1 with: cond2
•or: cond1 with: cond2
•not: cond
!

•beginsWith: cond
•endsWith: cond
•does: cond1 after: cond2
•does: cond1 before: cond2

UCONTRACTS : THE TOOL

VALIDATION ON AN
INDUSTRIAL CASE
• An interactive web application for event & resource planning

• developed in Pharo Smalltalk

• uses the Seaside web development framework.

• Medium-sized

• Packages: 45

• Classes: 827

• Methods: 11777

• LOCs: 94151

INDUSTRIAL VALIDATION :
SET-UP OF THE EXPERIMENT

• Qualitative assessment

• Ideally we would have liked the tool to be used directly by the
developers, but instead we had to perform an offline experiment.

• Together with the developers, during 2 days we defined 13
contracts documenting important regularities in their framework

• We checked all contracts in December and reported all contract
breaches to the developers

• 3 months later, we reverified compliance of the code against the
same contracts

INDUSTRIAL VALIDATION :
ABOUT THE CONTRACTS
• contracts related to the model of the web application

• for 3/5 of them violations were found

• 214 liable classes, 88 violations

• contracts related to the classes dealing with persistency

• for 2/2 of them violations where found

• 75 liable classes, 2 violations found

• contracts about how the UI is constructed with the Seaside framework

• for 4/6 of them violations where found

• 598 liable classes, 8 violations found

INDUSTRIAL VALIDATION :
EXAMPLE OF A CONTRACT

Private methods should not be called directly

liable classes

contract

INDUSTRIAL VALIDATION :
EXAMPLE OF A CONTRACT

In domain classes, state changes must mark model
objects as dirty so that they can be re-rendered

liable classes

contract

INDUSTRIAL VALIDATION :
EXAMPLE OF A CONTRACT

Overridden initialisation methods should start with a
super call (and be put in an appropriate protocol)

liable classes

contract

INDUSTRIAL VALIDATION :
EXAMPLE OF A CONTRACT

Certain messages need to be sent at the end of a
method cascade liable classes

contract

INDUSTRIAL VALIDATION :
EXAMPLE OF A CONTRACT

Certain messages need to be sent at the end of a
method cascade liable classes

contract

contract	

WithInCascadeVisitor extends CustomConditionVisitor

INDUSTRIAL VALIDATION :
RESULTS

Contract Liable Methods Exceptions
Errors	

December
Errors	

March

Private methods
should not be
called directly

7410 0 3 2

Marking dirty
objects

333 5 7 2

Initialisation
methods should
start with super

44 0 1 0

Call ordering
within method

cascade
531 0 0 0

UCONTRACTS : CONCLUSION

• uContracts offer a simple unit-testing like way for letting programmers
document and check conformance to structural source-code regularities

• using a “contract” metaphor

• focus on immediate feedback during development

• embedded DSL close to the programming language

• tight integration with the IDE

• Publication pending: A. Lozano, K. Mens, and A. Kellens, “Usage
contracts: offering immediate feed- back on violations of structural
source-code regularities”. (submitted to SciCo)

FUTURE WORK

• More validation

• Improve / extend the DSL

• Port to most recent version of Pharo

• uContracts for other languages (e.g., Ruby)

