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SoLaSoTe’s cause: 
Knowledge representation

• Classification of languages and technologies 
as well as related concepts. 

• Dependencies between languages and 
technologies. 

• Concept-based characterization of languages 
and technologies. 

• Links to existing knowledge resources for 
languages and technologies. 

• Traceability for language and technology 
usage in shared software systems.
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http://101companies.org/wiki/Contribution:simplejdbc
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What kind of ontology? 

• Domain ontology 

• Task ontology 

• Application ontology 

• Generic ontology

Neither!
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SoLaSoTe’s perceived benefits
• Unambiguous terminology in the 

“domain” of languages and technologies. 

• Identification of commonalities and 
differences of entities in ditto domain. 

• Systematic demonstration of languages 
and technologies. 

• Integration of otherwise scattered 
knowledge resources.
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Querying SoLaSoTe to  
„infer“ knowledge

• Entity becomes a root class.
• Language, Technology, etc. become subclasses of Entity.
• The isA properties give rise to rdfs:subClassOf properties.
• The instanceOf properties give rise to rdf:type properties.
• All other semantic properties are adopted, as is.

– Analyze the integrity of the RDF triples:
• All resources have an rdf:type property.
• The subjects and objects of properties agree with the schema.
• No properties other than those of the schema are used.
• An instance is never specialized (as in OWL DL).

These integrity constraints are expressed as SPARQL queries that are obtained
by a simple interpretation of the schema.1 We skip over some details here such
as dealing with cardinalities for providing warnings regarding symptoms of
incompleteness in the ontology.

4 Querying SoLaSoTe

The ontology is not only useful for representing knowledge, but we can also query
it to infer knowledge not represented explicitly. Here are a few query scenarios:

Paradigm-specific concepts Given a small set of programming paradigms,
find the concepts that appear to be (more or less) uniquely associated with
each paradigm—by means of collecting concepts being mentioned in the
documentation of contributions, which are using programming languages of
the different paradigms.

Simple baseline implementation Find the contribution that uses a given
language and exercises a given concept such that there is no other contribution
with less features, languages, technologies, and concepts involved.

Knowledge holder shortage Identify languages and technologies that are
used infrequently by contributions without a proportional frequency of contrib-
utors who appear to be knowledgeable for these languages and technologies.
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1 The approach is inspired by Stardog’s ICV: http://docs.stardog.com/icv/
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The SoLaSoTe schema
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Top-level classification of entities

– Entity Everything in the scope of the ontology
• Language Software languages such as Java or XML

• Technology Software technologies such as JUnit or Eclipse

• Concept Software concepts such as Visitor or Unit testing

• Feature Features of 101’s imaginary system
• Contribution Implementations of 101’s imaginary system
• Contributor Contributors of code and documentation
• Theme Containers of related contributions
• Vocabulary Containers of domain-specific terms
• Resource External resources such as standards and specifications

Semantic properties grouped by subject entity

Entity
instanceOf Entity An instance/type relationship
isA Entity A specialization relationship
partOf Entity A whole-part relationship
dependsOn Entity Dependence relationship
mentions Entity Nonspecific reference in documentation
sameAs URL Equivalence relative to external resource
similarTo URL Similarity relative to external resource
linksTo URL Nonspecific reference to external resource
documentedBy Contributor Authorship of documentation
memberOf Vocabulary Membership in vocabulary of terms

Contribution
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Feature Feature implementation
developedBy Contributor Developer of contribution
reviewedBy Contributor Reviewer of contribution
memberOf Theme Membership in theme of contributions
basedOn Contribution Indication of reuse
varies Contribution Indication of variation
moreComplexThan Contribution Indication of complexity

Resource
describes Language Language definitions, et al.
describes Technology API specifications, et al.
describes Concept Textbook, white papers, et al.

Technology
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Language Parsers, compilers, interpreters, et al.
implements Resource Compliance with a standard, et al.
supports Concept Support of a protocol, et al.

Fig. 1. The schema of SoLaSoTe (with some omissions)

There are a few „less important“ types.
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Technicalities of 
SoLaSoTe
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<rdf:RDF ...>
!
<rdf:Description rdf:about="http://...#Entity">
<rdf:type rdf:resource="http://...#Class"/>
</rdf:Description>
!
<rdf:Description rdf:about="http://...#Language">
<rdfs:subClassOf rdf:resource="http://...#Entity"/>
</rdf:Description>
!
<rdf:Description rdf:about="http://...#Technology">
<rdfs:subClassOf rdf:resource="http://...#Entity"/>
</rdf:Description>
!
<rdf:Description rdf:about="http://...#Concept">
<rdfs:subClassOf rdf:resource="http://...#Entity"/>
</rdf:Description>
!
<owl:AllDisjointClasses>
<owl:members rdf:parseType="Collection">
<owl:class rdf:about="http://...#Language"/>
<owl:class rdf:about="http://...#Technology"/>
<owl:class rdf:about="http://...#Concept"/>
</owl:members>
</owl:AllDisjointClasses>
!
</rdf:RDF>

Rarely

„Do you use 

OWL?“
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Validation versus reasoning

• XSD, JSON-SCHEMA are made for good old validation. 

• RDFS and Owl are made for reasoning, not validation. 

• Validation implies (some sort of) CWA. 

• Semantic Web (for most part) assumes OWA.
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Our validation process
• Extract RDF triples from the semantic wiki:!

• Entity becomes a root class. 
• Language, Technology, etc. become subclasses of Entity. 
• The isA properties give rise to rdfs:subClassOf properties. 
• The instanceOf properties give rise to rdf:type properties. 
• All other semantic properties are adopted, as is. 

• Analyze the integrity of the RDF triples:!
• All resources have an rdf:type property. 
• The subjects and objects of properties agree with the schema. 
• No properties other than those of the schema are used. 
• An instance is never specialized (as in OWL DL).
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BTW, such techniques are used elsewhere.
http://docs.stardog.com/icv/
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{
    "@id": "onto:Technology",
    "@type": "onto:Entity",
    "properties": [
        {
            "property": "onto:uses",
            "range": "onto:Technology",
            "minCardinality": "0"
        },
        {
            "property": "onto:supports",
            "range": "onto:Protocol",
            "minCardinality": "0"
        },
        {
            "property": "onto:implements",
            "range": "onto:Specification",
            "minCardinality": "0"
        }
    ]
}

DSL for 

constraints
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SoLaSoTe in action
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SPARQL endpoint of 
SoLaSoTe
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The End.
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