
The SoLaSoTe ontology
for 

software languages
&

technologies

Ralf Lämmel, Martin Leinberger, and Andrei Varanovich
Software Languages Team

University of Koblenz-Landau, Germany
http://softlang.wikidot.com

© 2014, Software Languages Team, University of Koblenz-Landau

http://softlang.wikidot.com

Ontologies in software
engineering — some data points

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@article{GasevicGTW10,
 author = {Dragan Gasevic and
 Giancarlo Guizzardi and
 Kuldar Taveter and
 Gerd Wagner},
 title = {Vocabularies, ontologies, and rules for enterprise and business
 process modeling and management},
 journal = {Inf. Syst.},
 volume = {35},
 number = {4},
 year = {2010},
 pages = {375-378},
}

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@inproceedings{SouzaFV13,
 author = {Erica F. Souza and
 Ricardo de Almeida Falbo and
 N. L. Vijaykumar},
 title = {Ontologies in Software Testing: A Systematic Literature
 Review},
 booktitle = {ONTOBRAS},
 publisher = {CEUR-WS.org},
 series = {CEUR Workshop Proceedings},
 volume = {1041},
 year = {2013},
 pages = {71-82},
}

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@inproceedings{CarvalhoAG14,
 author = {Victorio Albani de Carvalho and
 Jo{\~a}o Paulo A. Almeida and
 Giancarlo Guizzardi},
 title = {Using Reference Domain Ontologies to Define the Real-World
 Semantics of Domain-Specific Languages},
 booktitle = {CAiSE},
 year = {2014},
 pages = {488-502},
 publisher = {Springer},
 series = {LNCS},
 volume = {8484},
}

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@inproceedings{BarcellosF13,
 author = {Monalessa Perini Barcellos and
 Ricardo de Almeida Falbo},
 title = {A software measurement task ontology},
 booktitle = {SAC},
 publisher = {ACM},
 year = {2013},
 pages = {311-318},
}

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@article{WongthongthamCDS09,
 author = {Pornpit Wongthongtham and
 Elizabeth Chang and
 Tharam S. Dillon and
 Ian Sommerville},
 title = {Development of a Software Engineering Ontology for Multisite
 Software Development},
 journal = {IEEE Trans. Knowl. Data Eng.},
 volume = {21},
 number = {8},
 year = {2009},
 pages = {1205-1217},
}

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@inproceedings{DobsonLS05,
 author = {Glen Dobson and
 Russell Lock and
 Ian Sommerville},
 title = {QoSOnt: a QoS Ontology for Service-Centric Systems},
 booktitle = {EUROMICRO-SEAA},
 year = {2005},
 pages = {80-87},
 publisher = {IEEE Computer Society},
}

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@article{Henderson-SellersGML14,
 author = {Brian Henderson-Sellers and
 Cesar Gonzalez-Perez and
 Tom McBride and
 Graham Low},
 title = {An ontology for ISO software engineering standards: 1) Creating
 the infrastructure},
 journal = {Computer Standards {\&} Interfaces},
 volume = {36},
 number = {3},
 year = {2014},
 pages = {563-576},
}

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@inproceedings{WongthongthamCDS05,
 author = {Pornpit Wongthongtham and
 Elizabeth Chang and
 Tharam S. Dillon and
 Ian Sommerville},
 title = {Software Engineering Ontologies and Their Implementation},
 booktitle = {IASTED Conf. on Software Engineering},
 publisher = {IASTED/ACTA Press},
 year = {2005},
 pages = {208-213},
}

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@incollection{RuizH06,
 author = "Francisco Ruiz, Jos\'e R. Hilera",
 title = "Ontologies for Software Engineering and Software Technology",
 year = "2006",
 pages = "49-102",
 booktitle = "Using Ontologies in Software Engineering and Technology",
 publisher = "Springer"
}

© 2014, Software Languages Team, University of Koblenz-Landau

Ontologies in software engineering

@inproceedings{Ahmed08,
 author = {Emdad Ahmed},
 title = {Use of Ontologies in Software Engineering},
 booktitle = {SEDE},
 year = {2008},
 publisher = {ISCA},
 pages = {145-150},
 bibsource = {DBLP, http://dblp.uni-trier.de}
}

© 2014, Software Languages Team, University of Koblenz-Landau

The SoLaSoTe ontology for 
software languages and technologies

© 2014, Software Languages Team, University of Koblenz-Landau

SoLaSoTe’s cause:
Knowledge representation

• Classification of languages and technologies
as well as related concepts.

• Dependencies between languages and
technologies.

• Concept-based characterization of languages
and technologies.

• Links to existing knowledge resources for
languages and technologies.

• Traceability for language and technology
usage in shared software systems.

© 2014, Software Languages Team, University of Koblenz-Landau

http://101companies.org/wiki/Contribution:simplejdbc

© 2014, Software Languages Team, University of Koblenz-Landau

http://101companies.org/wiki/Contribution:simplejdbc

What kind of ontology?

• Domain ontology

• Task ontology

• Application ontology

• Generic ontology

Neither!

© 2014, Software Languages Team, University of Koblenz-Landau

SoLaSoTe’s perceived benefits
• Unambiguous terminology in the

“domain” of languages and technologies.

• Identification of commonalities and
differences of entities in ditto domain.

• Systematic demonstration of languages
and technologies.

• Integration of otherwise scattered
knowledge resources.

© 2014, Software Languages Team, University of Koblenz-Landau

Querying SoLaSoTe to
„infer“ knowledge

• Entity becomes a root class.
• Language, Technology, etc. become subclasses of Entity.
• The isA properties give rise to rdfs:subClassOf properties.
• The instanceOf properties give rise to rdf:type properties.
• All other semantic properties are adopted, as is.

– Analyze the integrity of the RDF triples:
• All resources have an rdf:type property.
• The subjects and objects of properties agree with the schema.
• No properties other than those of the schema are used.
• An instance is never specialized (as in OWL DL).

These integrity constraints are expressed as SPARQL queries that are obtained
by a simple interpretation of the schema.1 We skip over some details here such
as dealing with cardinalities for providing warnings regarding symptoms of
incompleteness in the ontology.

4 Querying SoLaSoTe

The ontology is not only useful for representing knowledge, but we can also query
it to infer knowledge not represented explicitly. Here are a few query scenarios:

Paradigm-specific concepts Given a small set of programming paradigms,
find the concepts that appear to be (more or less) uniquely associated with
each paradigm—by means of collecting concepts being mentioned in the
documentation of contributions, which are using programming languages of
the different paradigms.

Simple baseline implementation Find the contribution that uses a given
language and exercises a given concept such that there is no other contribution
with less features, languages, technologies, and concepts involved.

Knowledge holder shortage Identify languages and technologies that are
used infrequently by contributions without a proportional frequency of contrib-
utors who appear to be knowledgeable for these languages and technologies.

References

1. Emdad Ahmed. Use of ontologies in software engineering. In SEDE, pages 145–150.
ISCA, 2008.

2. José R. Hilera Francisco Ruiz. Ontologies for software engineering and software
technology. In Using Ontologies in Software Engineering and Technology, pages
49–102. Springer, 2006.

3. Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, and Andrei Varanovich. 101com-
panies: A community project on software technologies and software languages. In
TOOLS (50), volume 7304 of LNCS, pages 58–74. Springer, 2012.

4. Ralf Lämmel. Software chrestomathies. Science of Computer Programming, 2013.
In print.

1 The approach is inspired by Stardog’s ICV: http://docs.stardog.com/icv/

© 2014, Software Languages Team, University of Koblenz-Landau

The SoLaSoTe schema

© 2014, Software Languages Team, University of Koblenz-Landau

Top-level classification of entities

– Entity Everything in the scope of the ontology
• Language Software languages such as Java or XML

• Technology Software technologies such as JUnit or Eclipse

• Concept Software concepts such as Visitor or Unit testing

• Feature Features of 101’s imaginary system
• Contribution Implementations of 101’s imaginary system
• Contributor Contributors of code and documentation
• Theme Containers of related contributions
• Vocabulary Containers of domain-specific terms
• Resource External resources such as standards and specifications

Semantic properties grouped by subject entity

Entity
instanceOf Entity An instance/type relationship
isA Entity A specialization relationship
partOf Entity A whole-part relationship
dependsOn Entity Dependence relationship
mentions Entity Nonspecific reference in documentation
sameAs URL Equivalence relative to external resource
similarTo URL Similarity relative to external resource
linksTo URL Nonspecific reference to external resource
documentedBy Contributor Authorship of documentation
memberOf Vocabulary Membership in vocabulary of terms

Contribution
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Feature Feature implementation
developedBy Contributor Developer of contribution
reviewedBy Contributor Reviewer of contribution
memberOf Theme Membership in theme of contributions
basedOn Contribution Indication of reuse
varies Contribution Indication of variation
moreComplexThan Contribution Indication of complexity

Resource
describes Language Language definitions, et al.
describes Technology API specifications, et al.
describes Concept Textbook, white papers, et al.

Technology
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Language Parsers, compilers, interpreters, et al.
implements Resource Compliance with a standard, et al.
supports Concept Support of a protocol, et al.

Fig. 1. The schema of SoLaSoTe (with some omissions)

There are a few „less important“ types.

© 2014, Software Languages Team, University of Koblenz-Landau

Top-level classification of entities

– Entity Everything in the scope of the ontology
• Language Software languages such as Java or XML

• Technology Software technologies such as JUnit or Eclipse

• Concept Software concepts such as Visitor or Unit testing

• Feature Features of 101’s imaginary system
• Contribution Implementations of 101’s imaginary system
• Contributor Contributors of code and documentation
• Theme Containers of related contributions
• Vocabulary Containers of domain-specific terms
• Resource External resources such as standards and specifications

Semantic properties grouped by subject entity

Entity
instanceOf Entity An instance/type relationship
isA Entity A specialization relationship
partOf Entity A whole-part relationship
dependsOn Entity Dependence relationship
mentions Entity Nonspecific reference in documentation
sameAs URL Equivalence relative to external resource
similarTo URL Similarity relative to external resource
linksTo URL Nonspecific reference to external resource
documentedBy Contributor Authorship of documentation
memberOf Vocabulary Membership in vocabulary of terms

Contribution
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Feature Feature implementation
developedBy Contributor Developer of contribution
reviewedBy Contributor Reviewer of contribution
memberOf Theme Membership in theme of contributions
basedOn Contribution Indication of reuse
varies Contribution Indication of variation
moreComplexThan Contribution Indication of complexity

Resource
describes Language Language definitions, et al.
describes Technology API specifications, et al.
describes Concept Textbook, white papers, et al.

Technology
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Language Parsers, compilers, interpreters, et al.
implements Resource Compliance with a standard, et al.
supports Concept Support of a protocol, et al.

Fig. 1. The schema of SoLaSoTe (with some omissions)

© 2014, Software Languages Team, University of Koblenz-Landau

Top-level classification of entities

– Entity Everything in the scope of the ontology
• Language Software languages such as Java or XML

• Technology Software technologies such as JUnit or Eclipse

• Concept Software concepts such as Visitor or Unit testing

• Feature Features of 101’s imaginary system
• Contribution Implementations of 101’s imaginary system
• Contributor Contributors of code and documentation
• Theme Containers of related contributions
• Vocabulary Containers of domain-specific terms
• Resource External resources such as standards and specifications

Semantic properties grouped by subject entity

Entity
instanceOf Entity An instance/type relationship
isA Entity A specialization relationship
partOf Entity A whole-part relationship
dependsOn Entity Dependence relationship
mentions Entity Nonspecific reference in documentation
sameAs URL Equivalence relative to external resource
similarTo URL Similarity relative to external resource
linksTo URL Nonspecific reference to external resource
documentedBy Contributor Authorship of documentation
memberOf Vocabulary Membership in vocabulary of terms

Contribution
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Feature Feature implementation
developedBy Contributor Developer of contribution
reviewedBy Contributor Reviewer of contribution
memberOf Theme Membership in theme of contributions
basedOn Contribution Indication of reuse
varies Contribution Indication of variation
moreComplexThan Contribution Indication of complexity

Resource
describes Language Language definitions, et al.
describes Technology API specifications, et al.
describes Concept Textbook, white papers, et al.

Technology
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Language Parsers, compilers, interpreters, et al.
implements Resource Compliance with a standard, et al.
supports Concept Support of a protocol, et al.

Fig. 1. The schema of SoLaSoTe (with some omissions)

Top-level classification of entities

– Entity Everything in the scope of the ontology
• Language Software languages such as Java or XML

• Technology Software technologies such as JUnit or Eclipse

• Concept Software concepts such as Visitor or Unit testing

• Feature Features of 101’s imaginary system
• Contribution Implementations of 101’s imaginary system
• Contributor Contributors of code and documentation
• Theme Containers of related contributions
• Vocabulary Containers of domain-specific terms
• Resource External resources such as standards and specifications

Semantic properties grouped by subject entity

Entity
instanceOf Entity An instance/type relationship
isA Entity A specialization relationship
partOf Entity A whole-part relationship
dependsOn Entity Dependence relationship
mentions Entity Nonspecific reference in documentation
sameAs URL Equivalence relative to external resource
similarTo URL Similarity relative to external resource
linksTo URL Nonspecific reference to external resource
documentedBy Contributor Authorship of documentation
memberOf Vocabulary Membership in vocabulary of terms

Contribution
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Feature Feature implementation
developedBy Contributor Developer of contribution
reviewedBy Contributor Reviewer of contribution
memberOf Theme Membership in theme of contributions
basedOn Contribution Indication of reuse
varies Contribution Indication of variation
moreComplexThan Contribution Indication of complexity

Resource
describes Language Language definitions, et al.
describes Technology API specifications, et al.
describes Concept Textbook, white papers, et al.

Technology
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Language Parsers, compilers, interpreters, et al.
implements Resource Compliance with a standard, et al.
supports Concept Support of a protocol, et al.

Fig. 1. The schema of SoLaSoTe (with some omissions)

Technicalities of
SoLaSoTe

© 2014, Software Languages Team, University of Koblenz-Landau

<rdf:RDF ...>
!
<rdf:Description rdf:about="http://...#Entity">
<rdf:type rdf:resource="http://...#Class"/>
</rdf:Description>
!
<rdf:Description rdf:about="http://...#Language">
<rdfs:subClassOf rdf:resource="http://...#Entity"/>
</rdf:Description>
!
<rdf:Description rdf:about="http://...#Technology">
<rdfs:subClassOf rdf:resource="http://...#Entity"/>
</rdf:Description>
!
<rdf:Description rdf:about="http://...#Concept">
<rdfs:subClassOf rdf:resource="http://...#Entity"/>
</rdf:Description>
!
<owl:AllDisjointClasses>
<owl:members rdf:parseType="Collection">
<owl:class rdf:about="http://...#Language"/>
<owl:class rdf:about="http://...#Technology"/>
<owl:class rdf:about="http://...#Concept"/>
</owl:members>
</owl:AllDisjointClasses>
!
</rdf:RDF>

Rarely

„Do you use

OWL?“

© 2014, Software Languages Team, University of Koblenz-Landau

Validation versus reasoning

• XSD, JSON-SCHEMA are made for good old validation.

• RDFS and Owl are made for reasoning, not validation.

• Validation implies (some sort of) CWA.

• Semantic Web (for most part) assumes OWA.

© 2014, Software Languages Team, University of Koblenz-Landau

Our validation process
• Extract RDF triples from the semantic wiki:!

• Entity becomes a root class.
• Language, Technology, etc. become subclasses of Entity.
• The isA properties give rise to rdfs:subClassOf properties.
• The instanceOf properties give rise to rdf:type properties.
• All other semantic properties are adopted, as is.

• Analyze the integrity of the RDF triples:!
• All resources have an rdf:type property.
• The subjects and objects of properties agree with the schema.
• No properties other than those of the schema are used.
• An instance is never specialized (as in OWL DL).

© 2014, Software Languages Team, University of Koblenz-Landau

BTW, such techniques are used elsewhere.
http://docs.stardog.com/icv/

© 2014, Software Languages Team, University of Koblenz-Landau

{
 "@id": "onto:Technology",
 "@type": "onto:Entity",
 "properties": [
 {
 "property": "onto:uses",
 "range": "onto:Technology",
 "minCardinality": "0"
 },
 {
 "property": "onto:supports",
 "range": "onto:Protocol",
 "minCardinality": "0"
 },
 {
 "property": "onto:implements",
 "range": "onto:Specification",
 "minCardinality": "0"
 }
]
}

DSL for

constraints

© 2014, Software Languages Team, University of Koblenz-Landau

SoLaSoTe in action

© 2014, Software Languages Team, University of Koblenz-Landau

SPARQL endpoint of
SoLaSoTe

© 2014, Software Languages Team, University of Koblenz-Landau

The End.

© 2014, Software Languages Team, University of Koblenz-Landau

