Relational Concept Analysis (RCA)

Mining multi-relational datasets Applied to class model evolution

SATToSE 2014

Marianne Huchard

July 11, 2014

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marianne Huchard SATToSE 2014

An introduction to RCA

RCA for model evolution In follow-up of model evolution In assisting model evolution

ヘロト ヘヨト ヘヨト ヘ

글 > 글

Brief presentation of FCA – Formal Concept Analysis

A methodology for:

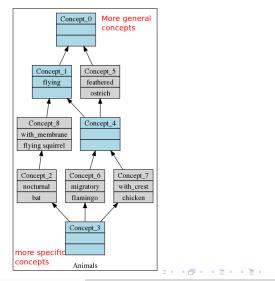
- data analysis, data mining
- knowledge representation
- unsupervised learning

Roots:

- lattice theory, Galois correspondences (Birkhoff, 1940; Barbut & Monjardet, 1970)
- concept lattices (Wille, 1982)

Brief presentation of FCA – Formal Concept Analysis

Contexts and concepts

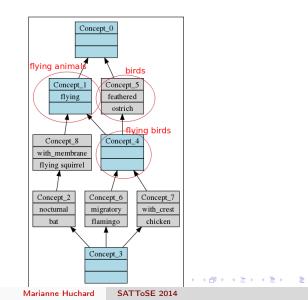

- Handled data
 - entities with characteristics
 - provided with a Formal Context (a binary table)

		flying	nocturnal	feathered	migratory	with_crest	with_membrane
- SA	flying squirrel	×					×
A	bat	\times	X				×
	ostrich			Х			
S	flamingo	X		Х	Х		
3	chicken	X		X		X	

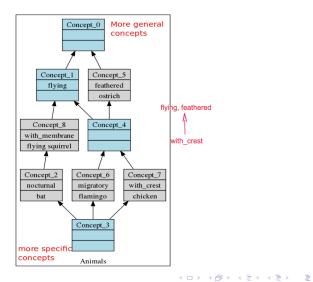
Concept : maximal group of entities sharing characteristics

Concept lattice : concepts with a partial order relation

Brief presentation of FCA – Formal Concept Analysis



Marianne Huchard

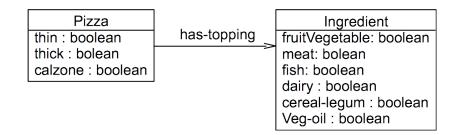

SATToSE 2014

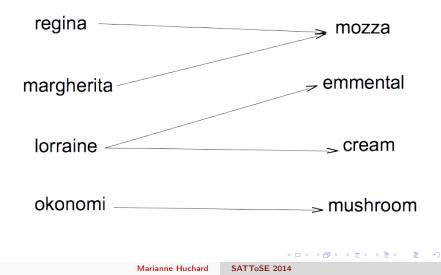
э

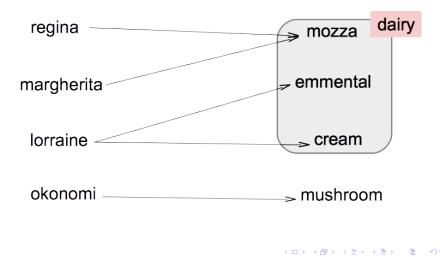
Brief presentation of FCA – Formal Concept Analysis

Brief presentation of FCA - Formal Concept Analysis

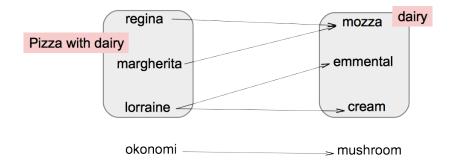
Marianne Huchard

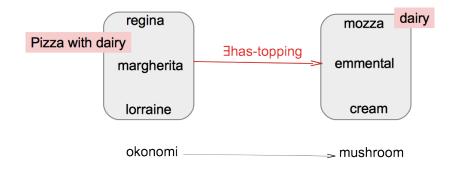

SATToSE 2014


FCA and complex data

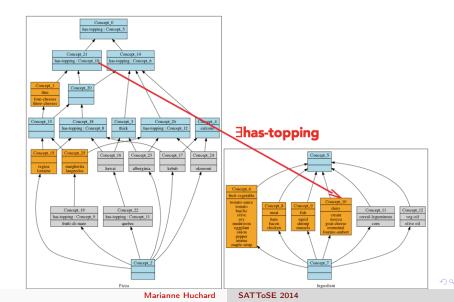

- many-valued contexts (integers, floats, terms, structures, symbolic objects, intervals, etc.) (Ganter/Wille, Polaillon, ...)
- fuzzy descriptions (Yahia et al., Belohlavek, ...)
- hierarchies on values (Godin et al., Carpineto/Romano, ...)
- logical description (Chaudron et al., Ferré et al., ...)
- ▶ graphs (Liquière, Prediger/Wille, Ganter/Kuznetsov, ...)
- Multi-relational data (Priss, Hacène-Rouane et al., ...)

etc.


< ロ > < 同 > < 回 > < 回 > < 回 > <



A flavor of Relational Concept Analysis


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A flavor of Relational Concept Analysis

Marianne Huchard SATToSE 2014

< 同 > < 三 > < 三 >

Relational Concept Analysis (RCA) [HHNV13]

- Extends the purpose of FCA for taking into account object categories and links between objects
- Main principles:
 - ► a relational model based on the entity-relationship model
 - integrate relations between objects as relational attributes
 - iterative process
- RCA provides a set of interconnected lattices
- Produced structures can be represented as ontology concepts within a knowledge representation formalism such as description logics (DLs).

Joint work with:

A. Napoli, C. Roume, M. Rouane-Hacène, P. Valtchev

・ロッ ・雪 ・ ・ ヨ ・ ・ 日 ・

Relational Context Family (RCF)

A simple entity-relationship model to introduce RCA Relational Context Family

- object-attribute contexts
 - Pizza
 - Ingredient
- object-object context
 - has-topping \subseteq Pizza \times Ingredient

▲ 同 ▶ ▲ 国 ▶ ▲

B N

Relational Context Family (RCF) / object-attributes contexts

Pizza	thin	thick	calzone
okonomi			×
alberginia		×	
margherita	×		
languedoc	×		
four-cheeses	×		
three-cheeses	×		
frutti-di-mare	×		
quebec		×	
regina	×		
hawai		×	
lorraine	×		
kebab			×

Ingredient	× fruit-vegetable	meat	fish	dairy	cereal-leguminous	veg-oil
tomato-sauce	×					
cream				×		
tomato	×					
basilic	×					
olive	×					
olive oil						×
soy	×					
mushroom	×					
eggplant	×					
onion	×					
pepper	×					
ananas	×					
mozza				×		
goat-cheese				×		
emmental				×		
fourme-ambert				Х		
squid			×			
shrimp			×a	•	⊨	$\exists \rightarrow$
mussols	1		~			

Marianne Huchard

SATToSE 2014

うくぐ

Relational Context Family (RCF) / object-object context / part 1

has-topping	tomato-sauce	cream	tomato	basilic	olive	olive oil	soy	mushroom	eggplant	onion	pepper	ananas
okonomi	×					×	×	×				
alberginia	×					×	×		×	×		
margherita	×		×	×	×	×						
languedoc	×		×	×	×	×				×	×	
four-cheeses		×										
three-cheeses		×										
frutti-di-mare	×				×	×						
quebec	×											
regina	×							×				
hawai	×											×
lorraine		×								×		
kebab	×		×		×					×		

Marianne Huchard

イロト イポト イヨト イヨト

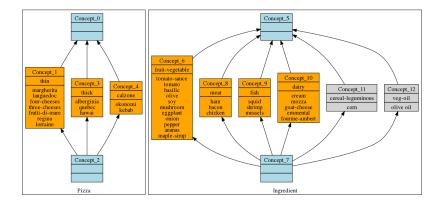
Relational Context Family (RCF) / object-object context / part 2

has-topping	mozza	goat-cheese	emmental	fourme-ambert	squid	shrimp	mussels	ham	bacon	chicken	maple-sirup	corn
okonomi												
alberginia												
margherita	×											
languedoc	×											
four-cheeses	×	×	×	×								
three-cheeses	×	×	×									
frutti-di-mare	×				×	×	×					
quebec	×							×			×	×
regina	×								×			
hawai	×			İ				×		İ		
lorraine			×						×			
kebab			×							×		

Marianne Huchard

イロト イポト イヨト イヨト

Data patterns we would like to extract


Using a classification on ingredients by their categories of topping (fruit-vegetable, dairy, etc.)

- create groups
 - The group of pizzas that contain at least one topping which is a vegetable
 - The group of pizzas (four-cheese and three-cheese) that have all their topping in dairy ingredients
- find implications
 - For pizzas: have meat \Rightarrow have dairy
 - For pizzas: being thin \Rightarrow have at least dairy
 - For pizzas: have only dairy \Rightarrow being thin

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

RCA - Initial Lattice building

At the beginning, only the object-attribute contexts are used to build the foundation of the concept lattice family

Marianne Huchard

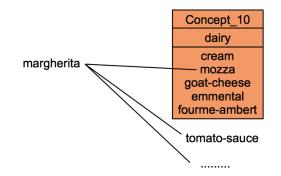
э

RCA - Introducing relations as relational attributes

Given an object-object context $R_j = (O_k, O_l, I_j)$,

There are different possible schemas between an object of domain O_k and concepts formed on O_l .

E.g.


- ▶ Existential: an object is linked (by *R_j*) to at least one object of the extent of a concept
- Universal: an object is linked (by R_j) only to objects of the extent of a concept

 \exists and \forall are scaling operators

・ロト ・同ト ・ヨト ・ヨト

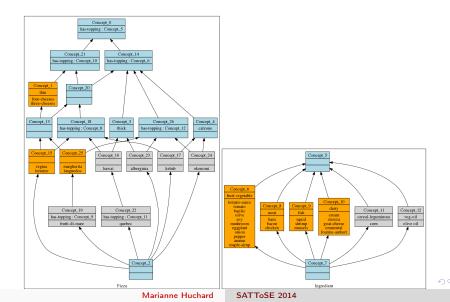
RCA - Existential relational attributes

margherita has one topping in Concept_10 extent: **mozza**. It has other links to other concept extents.

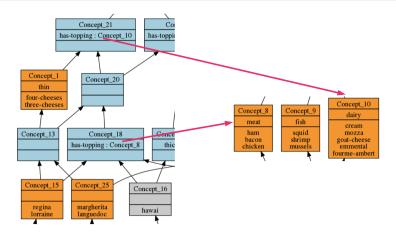
∃has-topping.Concept 10 is assigned to margherita

・ロト ・回ト ・ヨト ・

RCA - Relational extension


Scaled relations with domain O_i are concatenated to K_i , the object-attribute context on O_i

					Concept_7	Concept_5	Concept_6	Concept_8	Concept_9	Concept_10	Concept_11	Concept_12
Pizza	thin	thick	calzone		∃has-topping. Co	∃has-topping. Co	∃has-topping. Co	∃has-topping. Co	∃has-topping. Co	∃has-topping. Co	∃has-topping. Co	∃has-topping. Co
okonomi			×	1	d	d	Ido	ldo	d	d	d	d
alberginia		×			-t	-t-	s-t	s-t	-t	-t-	5-	-t
margherita	×				ha	ha	ha	ha	ha	ha	hai	ha
languedoc	×			has-topping	m	т	m	т	т	т	m	m
four-cheeses	×			okonomi		×	х					×
three-cheeses	×			alberginia		x	х					×
frutti-di-mare	×			margherita		×	х			×		×
quebec		×		languedoc		x	х			×		x
regina	×			four-cheeses		×				×		
hawai		×		three-cheeses		x				×		
lorraine	×			frutti-di-mare		×	х		×	x		x
kebab			×	quebec		x	х	х		×	×	
				regina		×	×	×		×		
				hawai		×	×	×		×		
				lorraine		×	×	×	ĺ	×		
				kebab		×	x	x		×		


Marianne Huchard

SATToSE 2014

Relational Concept Family / exists

Relational Concept Family / exists

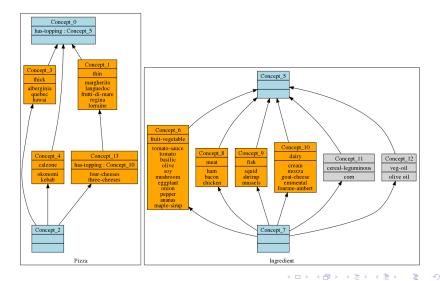
Concept_21: pizzas with at least one topping in dairy Concept_18: pizzas with at least one topping in meat have at least one meat topping \Rightarrow have at least one dairy topping \Rightarrow .

RCA - Universal relational attributes

three-cheese has topping in and only in Concept_10 extent.

 $\forall \exists has-topping.Concept_10 \text{ is assigned to three-cheese}$

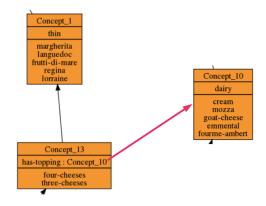
< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


RCA - Relational extension

Scaled relations with domain O_i are concatenated to K_i , the object-attribute context on O_i

					Concept_7	Concept_5	Concept_6	Concept_8	Concept_9	Concept_10	Concept_11	Concept_12
Pizza	thin	thick	calzone		∀∃has-topping. Co	∀∃has-topping. Co	√∃has-topping. Co	∀∃has-topping. Co	∀∃has-topping. Co	∀∃has-topping. Co	∃has-topping. Co	∀∃has-topping. Co
okonomi	-	-	X		d	d	dd	dd	dd	do	d	d
alberginia		×			s-t s-t							
margherita	×			1	ha	ha	lha	lha	lha	ha	ha	ha
languedoc	×			has-topping	⊳	⊳	⊳	⊳	⊳			\geq
four-cheeses	×			okonomi		×						
three-cheeses	×			alberginia		×						
frutti-di-mare	×			margherita		×						
quebec		×		languedoc		×						
regina	×			four-cheeses		×				×		
hawai		\times		three-cheeses		×				×		
lorraine	×			frutti-di-mare		×						
kebab			×	quebec		×						
				regina		×						
				hawai		x						
				lorraine		×						
				kebab		х	4.0		a .	(=)		=

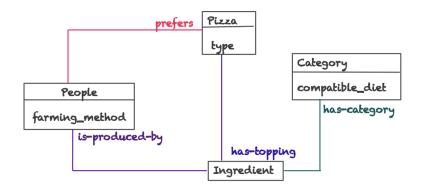
Marianne Huchard


Relational Concept Family / forall

Marianne Huchard

SATToSE 2014

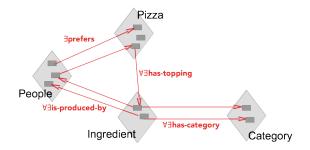
Relational Concept Family / forall



Concept_13: pizzas with only dairy topping Concept_1: thin pizzas have only dairy topping \Rightarrow thin

Marianne Huchard

SATToSE 2014


General Entity-Relationship diagram may have circuits

 \exists prefers $\forall \exists$ has-topping $\forall \exists$ has-category $\forall \exists$ is-produced-by

< ロ > < 同 > < 回 > < 回 > < 回 > <

General Entity-Relationship diagram may have circuits

Example of possible learned knowledge

- ► $\forall \exists has-category.Vegetable \Leftrightarrow \forall \exists is-produced-by.Organic farmers$
- A subgroup of organic farmers prefer at least one pizza with only vegan topping ingredients and produced only by organic farmers

The RCA schema

Input

RCF: *n* object-attribute contexts, *m* object-object contexts

Initialization step

Build the concept lattice for each object-attribute context

Step p

> Apply relational scaling to all object-object contexts

 Build relational extension of each object-attribute context: object-attribute context + scaled object-object contexts
 Build the concept lattice for each relational extension

Output (fix point)

The concept lattice family obtained when no new concepts are added

・ 同 ト ・ ヨ ト ・ ヨ ト

A synthesis on RCA

- an iterative method to produce interconnected classifications
- converges after a number of iterations that depends on the structure
- a variety of scaling operators
- reduced structures can be used instead lattices: AOC-posets, iceberg lattices

Tools

- ► Galicia: http://galicia.sourceforge.net/
- eRCA: http://code.google.com/p/erca/
- RCAexplore:

http://dolques.free.fr/rcaexplore/site_web/

(日) (四) (日) (日)

An introduction to RCA	In follow-up of model evolution
RCA for model evolution	In assisting model evolution

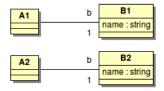
An introduction to RCA

RCA for model evolution In follow-up of model evolution In assisting model evolution

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Context and Problematic

Environment and Territory domains

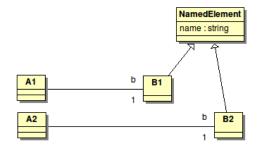

- Development of Information System involves many actors and scientists: EIS-Pesticides
- Meeting after meeting, the designer has to merge various viewpoints in a global UML that evolves progressively
- During the analysis phase, models are archived after each major change

Joint work with B. Amar, X. Dolques, F. Le Ber, T. Libourel, A. Miralles, C. Nebut, A. Osman-Guédi

In follow-up of model evolution In assisting model evolution

э

RCA for class model normalization

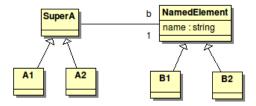

Marianne Huchard SATToSE 2014

In follow-up of model evolution In assisting model evolution

イロン イロン イヨン イヨン

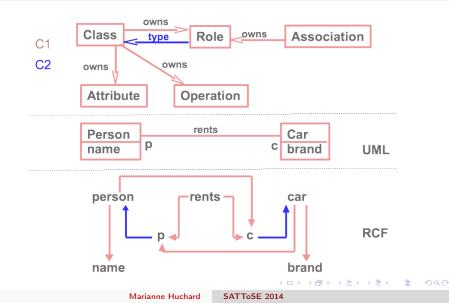
э

RCA for class model normalization



Marianne Huchard SATToSE 2014

In follow-up of model evolution In assisting model evolution


イロト イポト イヨト イヨト

RCA for class model normalization

In follow-up of model evolution In assisting model evolution

RCA for class model normalization

< /₽ > < E >

RCA for class model normalization

Strong properties of the resulting class model

- No redundancy
- All abstractions are created
- All specialization links are present

Approach

Develop methods using the class model normal form obtained with RCA for class model construction and evolution:

- monitoring
- assisting

(日) (同) (三)

An introduction to RCA

RCA for model evolution In follow-up of model evolution

In assisting model evolution

Model evolution monitoring

Classical model indicators

The domain experts mainly used the number of elements of various kinds (classes, methods...)


- Do not reveal complex evolution :
 - precision in the description of model elements
 - level of abstraction and factorization

Proposal

Develop indicators based on the application of RCA As RCA produces a unique normal form, our metrics are based on the comparison of these normal forms (here with configuration C1)

In follow-up of model evolution In assisting model evolution

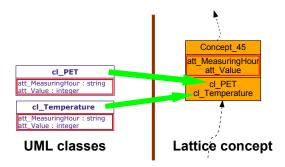
Evolution of the different model elements

Marianne Huchard

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Lattice indicators evolution: #Merge/#Model Elements

The metrics based on the ratio of merged concepts: #Merge / #Model Elements


- Merged Concepts have a proper extent that contains more than one element
- They merge several formal objects with the same description

イロト イポト イヨト イヨト

In follow-up of model evolution In assisting model evolution

イロト イポト イヨト イヨト

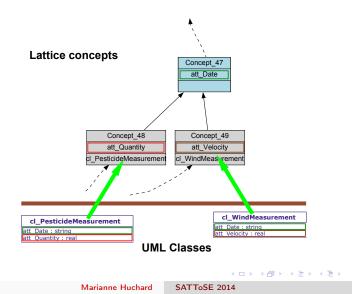
Example of merged concept

Marianne Huchard SATToSE 2014

In follow-up of model evolution In assisting model evolution

< ロ > < 同 > < 回 > < 回 > < 回 > <

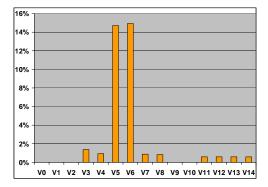
Lattice indicators evolution: #New/#Model Elements


The metrics based on the ratio of new concepts: #New / #Model Elements

- New Concepts have an empty proper extent
- They factorize formal attributes

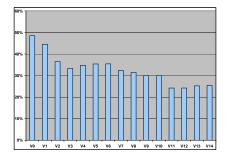
In follow-up of model evolution In assisting model evolution

э


Example of new concept

In follow-up of model evolution In assisting model evolution

< A > <


Indicators on Classes : Merged Classes

▶ V5, V6 : Package duplication

In follow-up of model evolution In assisting model evolution

Indicators on Classes : New Classes

- Progressive decrease even if the number of classes increases
- The abstraction level of the model improves
- ▶ V5, V6 : the package duplication degrades the abstraction level

イロト イポト イヨト イヨト

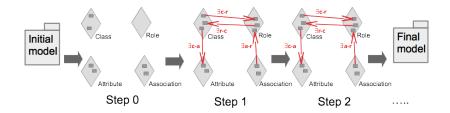
Discussion

Classical metrics to analyze

- Evolution of data encapsulation (\simeq number of classes)
- ► Evolution of the completion of the model (~ number of attributes)
- ► Evolution of the relational aspect (~ number of roles / associations)

RCA-based metrics complete the analysis

- Evolution of the merged ratio indicates if identical or badly described model elements are introduced
- Evolution of the new ratio indicates the level of abstraction

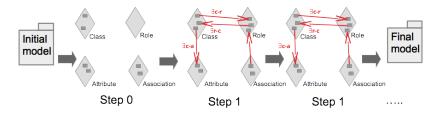

An introduction to RCA

RCA for model evolution In follow-up of model evolution In assisting model evolution

(日)

In follow-up of model evolution In assisting model evolution

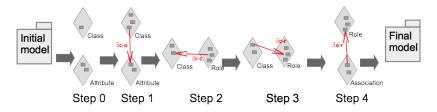
Traditional RCA approach



lssue

The final model contains many merged or new elements, this is difficult to analyze to keep the relevant part

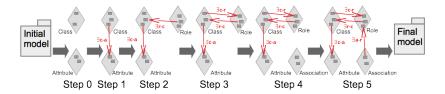
Exploration path


Fighting against possible high number of concepts to be analyzed by choosing good configurations by bringing concepts step by step

Auto path: all contexts are considered, but the process stops at each step and presents the concepts to the designer

Exploration path

Fighting against possible high number of concepts to be analyzed by using parts of the RCF



Path 1: each step considers a specific part of the RCF

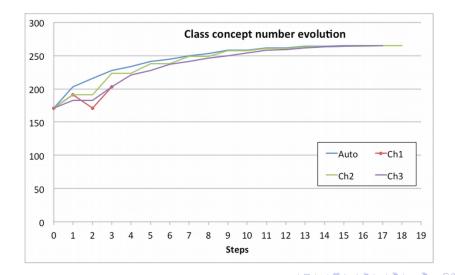
< A > <

Exploration path

Fighting against possible high number of concepts to be analyzed by using parts of the RCF - cumulative

Path 2: Begin by class/attributes, add roles, add associations Path 3: A variant that begins by class/roles

Quantitative analysis: ex. with class concepts to be analyzed at each step


RCA application on Pesticides: 171 classes before, 265 concepts

step tr.	Auto	Path 1	Path 2	Path 3	step tr.	Auto	Path 1	Path 2	Path 3	
$0 \rightarrow 1$	32	20	20	12	$10 \rightarrow 11$	4		4	4	1
$1 \rightarrow 2$	13	-20	0	0	$11 \rightarrow 11$	0		0	1	
$2 \rightarrow 3$	12	32	32	20	$12 \rightarrow 13$	2		2	3	
$3 \rightarrow 4$	6		0	18	$13 \rightarrow 14$	0		0	1	
$4 \rightarrow 5$	7		15	7	14 ightarrow 15	1		1	1	
$5 \rightarrow 6$	4		0	9	15 ightarrow 16	0		0	1	
6 →7	5		11	4	16 ightarrow 17	Auto		1	0	
$7 \rightarrow 8$	3		0	5	$17 \rightarrow 18$	Auto		0		
8 →9	5		8	4						'
$9 \rightarrow 10$	0		0	4		< • • • • 6		≣ ► ∢	≡ ▶	唐 、

Marianne Huchard

In follow-up of model evolution In assisting model evolution

Class concept number evolution

Marianne Huchard

イロト イポト イヨト イヨト

Discussion

- Exploration divides the burden of the analysis
- The process is controlled by the expert
- Paths cannot be chosen by chance, cumulative paths ensure completeness
- Perspectives: define a complete methodology and tools

General Conclusion

- RCA: an opportunity for analyzing more deeply dataset composed of objects and relations
- Can be mixed with other FCA extension (to numerical data for example)
- Exploratory RCA allows us step-by-step analysis, considering a subset of the dataset and changing structures (lattices, AOC-posets, iceberg)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Perspectives

- A querying mechanism and navigation tools
- Comparing AOC-poset and lattice in the applications
- Studying effect of exploration on the method convergence

In follow-up of model evolution In assisting model evolution

(日)

Class concept number evolution

Questions?

Marianne Huchard SATToSE 2014

ヘロト ヘアト ヘリト ヘ

Improving Generalization Level in UML Models Iterative Cross Generalization in Practice.

In ICCS 2004, pages 346-360, 2004.

Jean-Rémy Falleri.

Contributions à l'IDM : reconstruction et alignement de modèles de classes. PhD thesis, Université Montpellier 2, 2009.

Jean-Rémy Falleri, Marianne Huchard, and Clémentine Nebut. A generic approach for class model normalization. In *ASE 2008*, pages 431–434, 2008.

Mohamed Rouane Hacene, Marianne Huchard, Amedeo Napoli, and Petko Valtchev. Relational concept analysis: mining concept lattices from multi-relational data. *Ann. Math. Artif. Intell.*, 67(1):81–108, 2013.

Cyril Roume.

Analyse et restructuration de hiérarchies de classes. PhD thesis, Université Montpellier 2, 2004.