
SATToSE 2014 — Pre-proceedings

Advanced Techniques and Tools

for Software Evolution

Extended Abstracts

Seminar Series, SATToSE 2014
L’Aquila, Italy, 9–11 July, 2014

Dipartimento di Informatica
Università degli Studi dell’Aquila
I–67100 L’Aquila, Italy

Vadim Zaytsev (Ed.)

Preface
SATToSE is the Seminar Series on Advanced Techniques & Tools for Software

Evolution. The goal of SATToSE is to gather both undergraduate and graduate
students to showcase their research, exchange ideas, improve their communication
skills and attend technical sessions.

The 7th edition of SATToSE took place in L’Aquila (Italy) on 9–11 July 2014.
Past editions of SATToSE saw presentations on software visualisation techniques,
tools for co-evolving various software artefacts, their consistency management, run-
time adaptability and context-awareness, as well as empirical results about software
evolution. The attendees of SATToSE 2014 enjoyed 5 invited speakers, 19 technical
presentations, a tutorial, technology showdown and hackathon sessions, as well as
lively social events.

Many people contributed to the success of SATToSE 2014. I would like to truly
acknowledge the Steering Committee that gave us the possibility to organise the 7th
edition of the event in L’Aquila. I am also indebted to Vadim Zaytsev that managed
to arrange a strong program, to the invited speakers and to the students themselves
that contributed to make SATToSE 2014 a remarkable experience. Last but not least
I would like to thank Ludovico Iovino and Romina Eramo that contributed to the
local organisation.

9–11 July 2014 Davide Di Ruscio
SATToSE 2014

Organisation
SATToSE 2014 is hosted by Department of Information Engineering Computer

Science and Mathematics (DISIM) of the University of L’Aquila, Italy.

General Chair Davide Di Ruscio (University of L’Aquila, Italy)
Program Chair Vadim Zaytsev (University of Amsterdam, The Netherlands)
Hackathon Chair Alexander Serebrenik (Eindhoven University of Technology,

The Netherlands)
Local organisation Romina Eramo (University of L’Aquila, Italy)

Ludovico Iovino (University of L’Aquila, Italy)

Steering Committee
Ralf Lämmel (University of Koblenz-Landau)

Michael W. Godfrey (University of Waterloo)
Marianne Huchard (University of Montpellier 2)
Tom Mens (University of Mons)
Oscar Nierstrasz (University of Bern)
Coen De Roever (Free University Brussels)
Vadim Zaytsev (University of Amsterdam)

http://sattose.org

http://sattose.org

Contents

Lecture Abstracts

Alexander Serebrenik
Human Aspects of Software Engineering 2

Leon Moonen
Assessment and Evolution of Safety-Critical Cyber-Physical Product
Families . 3

Tanja Vos
Test Automation at the User Interface Level 5

Marianne Huchard
Relational Concept Analysis: Mining Multi-relational Datasets for As-
sisted Class Model Evolution . 6

Alfonso Pierantonio
Non-determinism and Bidirectional Model Transformations 7

Anya Helene Bagge
Language, Models and Megamodels . 8

Presentation Abstracts
Mining

Angela Lozano, Gabriela Arévalo, Kim Mens
Co-Occurring Code Critics . 10

Reinout Stevens, Coen De Roover
QwalKeko, a History Querying Tool 14

Philipp Schuster, Ralf Lämmel
Evolution and Dependencies of Hackage Packages 18

Çiğdem Aytekin, Tijs van der Storm
Inheritance Usage in Java: A Replication Study 22

Juri Di Rocco
Mining Metrics for Understanding Metamodel Characteristics 27

Transformations

Romeo Marinelli
A Taxonomy of Bidirectional Model Transformation and Its Application 31

Gianni Rosa
Managing Uncertainty in Bidirectional Transformations 35

3

Francesco Basciani
Automated Chaining of Model Transformations with Incompatible Meta-
models . 39

Analysis

Thomas Schmorleiz, Ralf Lämmel
Similarity Management via History Annotation 45

Marianne Huchard, Ines Ammar, Ahmad Bedja Boana, Jessie
Carbonnel, Theo Chartier, Franz Fallavier, Julie Ly, Vu-Hao
(Daniel) Nguyen, Florian Pinier, Ralf Saenen, Sebastien Vil-
lon
Class Model Extraction from Procedural Code: Confronting a Few
Ideas from the 2000’s Against the Reality of an Industrial System . . . 49

Nevena Milojković
Towards Cheap, Accurate Polymorphism Detection 54

Ammar Hamid
Detecting Refactorable Clones Using PDG and Program Slicing 56

Hakan Aksu, Ralf Lämmel
Analysis of Developer Expertise of APIs 60

Ralf Lämmel, Martin Leinberger, Andrei Varanovich
The SoLaSoTe Ontology for Software Languages and Technologies . . 63

Visualisation

Abderrahman Mokni, Marianne Huchard, Christelle Urtado, Syl-
vain Vauttier, Huaxi (Yulin) Zhang
A Three-Level Formal Model for Software Architecture Evolution . . . 67

Leonel Merino
Adaptable Visualisation Based on User Needs 71

Alexandre Bergel
A Tale about Software Profiling, Debugging, Testing, and Visualization 75

Metrics

Tom Mens, Mathieu Goeminne, Uzma Raja, Alexander Serebrenik
Survivability of Software Projects in Gnome — A Replication Study . 79

Kim Mens, Angela Lozano, Andy Kellens
Usage Contracts . 83

Author Index 85

Lecture Abstracts

Human Aspects of Software Engineering
Invited Talk Abstract

Alexander Serebrenik

Software Engineering and Technology
Faculteit Wiskunde en Informatica
Technische Universiteit Eindhoven

The Netherlands
a.serebrenik@tue.nl

Software engineering is inherently a collaborative venture, involving many
stakeholders that coordinate their efforts to produce large software systems.
While importance of human aspects in software engineering has been recognised
already in the 1970s, emergence of open source software (late 1990s) and plat-
forms such as Stack Overflow and GitHub (late 2000s) enabled application of
empirical methods to study of human aspects of software engineering.

In the first part of the talk we present a selection of recent results pertaining
to two main questions: who are the software developers and in what kind of
activities they engage. The second part of the talk focuses on tools and techniques
that have been used to obtain the aforementioned results.

Assessment and Evolution of Safety-Critical
Cyber-Physical Product Families

Invited Talk Abstract

Leon Moonen

Simula Research Laboratory
Norway

leon.moonen@computer.org

The research presented in this talk is part of an ongoing industrial collabo-
ration with Kongsberg Maritime (KM), one of the largest suppliers of maritime
systems worldwide. The division that we work with specialises in computerised
systems for safety monitoring and automatic corrective actions on unacceptable
hazardous situations. The overall goal of the collaboration is to provide our part-
ner with software analysis tooling that provides source based evidence to support
cost-effective software certification of evolving systems. In particular, we study
a family of complex safety-critical embedded software systems that connect soft-
ware control components to physical sensors and mechanical actuators.

A frequently advocated approach to manage the development of such complex
software systems is to compose them from reusable components, instead of start-
ing from scratch. Components may be implemented in different programming
languages and are tied together using configuration files, or glue code, defining
instantiation, initialisation and interconnections. Although correctly engineering
the composition and configuration of components is crucial for the overall be-
haviour, there is surprisingly little support for incorporating this information in
the static verification and validation of these systems. Analysing the properties
of programs within closed code boundaries has been studied for some decades
and is well-established.

Moreover, sharing components between software products introduces depen-
dencies that complicate maintenance and evolution: changes made in a compo-
nent to address an issue in one product may have undesirable effects on other
products in which the same component is used. Therefore, developers not only
need to understand how a proposed change will impact the component and prod-
uct at hand; they also need to understand how it affects the whole product family,
including systems that are already deployed. Given that these systems contain
thousands of components, it is no surprise that it is hard to reason about the
impact on a single product, let alone on a complete product family. Conventional
impact analysis techniques do not suffice for large-scale software-intensive sys-
tems and highly populated product families, and engineers need better support
to conduct these tasks.

In the talk, we will discuss the techniques we developed to support analysis
across the components of a heterogeneous component-based system. We build
upon OMG’s Knowledge Discovery Metamodel to reverse engineer fine-grained

homogeneous models for systems composed of heterogeneous artifacts. Next, we
track the information flow in these models using slicing, and apply several trans-
formations that enable us to visualise the information flow at various levels of
abstraction, trading off between scope and detail and aimed to serve both safety
domain experts as well as developers. These techniques are implemented in a
prototype tool-set that has been successfully used to answer software certifi-
cation questions of our industrial partner. In addition, we discuss our ongoing
research to build recommendation technology that supports engineers with the
evolution of families of safety-critical, software-intensive systems. This technol-
ogy builds on extensions of the previously discussed techniques to systematically
reverse engineer abstract representations of software products to complete soft-
ware product families, new algorithms to conduct scalable and precise change
impact analysis (CIA) on such representations, and recommendation technol-
ogy that uses the CIA results and constraint programming to find an evolution
strategy that minimises re- certification efforts.

4 Assessment and Evolution of Safety-Critical Cyber-Physical Product Families

Test Automation at the User Interface Level
Invited Talk Abstract

Tanja E. J. Vos

Departamento de Sistemas Informaticos y Computación
Universidad Politecnica de Valencia

Spain
tvos@dsic.upv.es

Testing applications at the UI level is an important yet expensive and labour-
intensive activity. Several tools exist to automate UI level testing. Capture replay
tools rely on the UI structure and require substantial programming skills and
effort. These tools implicitly make the assumption that the UI structure remains
stable during software evolution and that such structure can be used effectively
to anchor the UI interactions expressed in the test cases. Consequently, when
test cases are evolved, adapted, parameterized or generalized to new scenarios,
the maintenance cost can get real high and the competence required from pro-
grammers can become an obstacle. Visual testing tools take advantage of image
processing algorithms to simulate the operations carried out manually by testers
on the UI making UI testing as simple as that carried out step by step by hu-
mans. These visual testing approaches simplify the work of testers as compared
to the structural testing approaches. However, they do rely on the stability of the
graphical appearance of the UI, and require substantial computational resources
for image processing. Changes to the application often also involve changes to
the UI, hence also threatening the visual approach. Visual clues in the UI might
mislead the image recognizer of visual testing tools, which are correspondingly
subject to false positives (wrong UI element identification) and false negatives
(missed UI elements). In this talk we will present the tool TESTAR, whose de-
velopment was initiated under the FITTEST project. TESTAR automatically
generates and executes test cases based on a structure that is automatically de-
rived from the UI through the accessibility API. Since this structure is build
automatically during testing, the UI is not assumed to be fixed and tests will
run even though the UI evolves, which will reduce the maintenance problem that
threatens the approaches mentioned earlier. The basic functionality of the tool
will be presented, together with some case studies done in industry to evaluate
the approach.

Relational Concept Analysis:
Mining Multi-relational Datasets for Assisted

Class Model Evolution
Invited Talk Abstract

Marianne Huchard

Université Montpellier 2 — Faculté Des Sciences
Montpellier, France

marianne.huchard@lirmm.fr

Formal Concept Analysis is a well established framework for extracting an
ordered set of concepts from a dataset, called a Formal Context, composed of
entities described by characteristics. This data analysis framework is currently
applied to support various tasks, including information retrieval, data mining, or
ontology alignment. It also has many applications in software engineering such
as software understanding, extracting or maintaining class models, or software
reengineering.

Relational Concept Analysis (RCA) is an extension of the FCA framework
to multi-relational datasets, namely datasets composed of several categories of
entities described by both characteristics and inter-entities links. RCA generates
a set of concept lattices, precisely one for each category of entity. The concepts
are connected via “relational attributes” that are abstractions of the initial links
and traverse the lattice frontier. The concept lattice set is a particular view
on the dataset, which reveals implication rules involving relationships, as well
as relevant connections between classified groups of entities. In this talk, we
introduce RCA and we explain its strengths and limits. Then we develop an
exploratory approach for assisting a domain expert in class model evolution,
more precisely for the class model building and for the follow-up of the class
model abstraction level.

Non-determinism and Bidirectional Model
Transformations

Invited Talk Abstract

Alfonso Pierantonio

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
Università degli Studi dell’Aquila

Italy
alfonso.pierantonio@univaq.it

In Model-Driven Engineering (MDE), the potential advantages of using bidi-
rectional transformations in various scenarios are largely recognized. Despite its
relevance, bidirectional languages have rarely produced anticipated benefits. In
explanation of this difficulty different arguments can be provided, in particular
it has been widely discussed how bidirectional transformations need not be bi-
jective. Any transformation which is not injective is non-deterministic, in the
sense that more than one admissible solution is in principle possible. Unfortu-
nately, most of the current languages generate only one model at time, possibly
not the desired one, without the possibility to specify an update policy. This
talk discusses these issues and tries to outline what are the challenges and the
possible solutions.

Language, Models and Megamodels
Tutorial Abstract

Anya Helene Bagge

Institutt for Informatikk
Universitetet i Bergen

Norway,
anya@ii.uib.no

A model is an abstraction of a system, made to facilitate some kind of under-
standing or processing by humans or computers. Abstracting away from details
allows us to deal with systems that would otherwise be too large or too compli-
cated to deal with.

Models and modelling are of particular importance in software engineering
for two reasons: First, the software itself is often meant to model some system;
and second, software systems tend to be so large and complicated that they are
themselves in need of modelling as part of the development process.

Modelling of systems and modelling of software naturally brings us to the
modelling of modelling and of models. While metamodels are models of modelling
languages (i.e., the abstractions used to describe models), a megamodel is a model
of a system of models (i.e., a model where the elements are models). The design
of software systems may involve many models, metamodels and artifacts – all of
these can be captured in a megamodel, together with the relationships between
them. The details of the individual models are abstracted away, leaving a bird’s
eye view of the roles and relationships of the models.

This tutorial will explain megamodelling in practice, with a particular focus
on examples from software language engineering.

Presentation Abstracts

Co-Occurring Code Critics

Angela Lozano, Gabriela Arévalo, and Kim Mens

Vrije Universiteit Brussel Universidad Nacional de Quilmes Université Catholique de Louvain
Pleinlaan 2 Roque Sáenz Peña 352 Place Sainte Barbe 2

Brussels, Belgium Buenos Aires, Argentina Louvain-la-Neuve, Belgium
alozano@soft.vub.ac.be gabriela.b.arevalo@gmail.com kim.mens@uclouvain.be

Abstract. Code critics are controversial implementation choices (such
as bad smells or code smells) but at a higher level of detail. Code critics
are a recommendation facility of the Smalltalk-Pharo IDE. They aim to
achieve standard idioms which allow for a better performance or for a
better use of object-oriented building mechanisms. Code critics can be
identified at the method- or class-level. We are analyzing in several appli-
cations which code critics tend to occur in the same source code entity to
see to what extent it is possible to identify controversial implementation
choices at a higher level of abstraction.

Keywords: Bad smells, code smells, code critics, Smalltalk, Pharo, em-
pirical software engineering, co-occurrence

1 Introduction

In the context of design and coding any application, there is a plethora of imple-
mentation recommendations. Some of these recommendations are given at a high
level of abstraction (e.g., low coupling and high cohesion) or while others are very
specific level (e.g., classes should not have more than 6 methods). Most of the re-
search on recommending the elimination of controversial implementation choices
uses a top-down approach. That is, the recommendations given at a high level of
abstraction are disassembled into concrete symptoms until a straightforward de-
tection strategy is reached (e.g., Marinescu‘s design flaws [2], Gueheneuc/Moha‘s
antipatterns [3]). However, it is difficult to argue that those concrete detection
strategies and the way in which they are combined represent all and only those
entities that the high level recommendation aims to convey. We propose to ex-
tract high-level recommendations from the analysis of specific recommendations.
The recommendations extracted would not be affected by different interpreta-
tions (as opposed to the approaches to detect Fowler’s bad smells[1] which differ
on heuristics1, metrics2 and thresholds3). Moreover, this study would allows us
to validate the need of the specific recommendations analyzed.

1 Heuristics are incomplete by definition
2 The definition of some metrics are also open to interpretation resulting in different

tools that provide different results for the same metric.
3 Thresholds tend to be absolute values that cannot be used across applications or

relative values whose cut point is arbitrary.

1.1 Code critics

Code critics is a list of implementation choices in Smalltalk known for being
‘ungraceful’. These critics may point out at defects or performance issues in
the code. There are code critics only for methods or for classes. Each critic has
a short name and a description that explains why that implementation choice
could be harmful. In some cases, the code critic also proposes a refactoring.

Although code critics may contain many false positives, the IDE allows to
‘turn off’ manually any result. The results that have been turned off are saved
within the image so that the developer does not have to browse the same false
positive ever again. Each code critic belongs to a category that indicates its
harmfulness. The categories are Unclassified, Style, Idioms, Optimization, Design
Flaws, Potential Bugs, and Bugs.

2 Data collected

Although the code critics tool is designed to analyze the whole image on a selec-
tion of critics, as anything else in Smalltalk it can be run programmatically. We
analyze all critics implemented except Spelling rules 4(i.e., 120 code critics) from
which 27 apply to classes, and 93 apply to methods. We analyzed all packages
contained in the image used for the latest distribution of Moose (i.e., Pharo 1.4).
For each package (71 in total) we find all critics in methods/classes except for
those that implement tests5. The result of this analysis is a set of boolean tables
(two tables per package: one for its methods and another one for its classes) that
indicate which source code entities had which critics (each row has a code critic
while each column has a method or class of the package) (shown in Table 1).

These boolean tables are converted into distance tables that measured to
what extent the entities affected by one code critic are also affected by another
code critic. The distance between two code-critics are calculated by counting the
number of source code entities (classes or methods) that were affected by only
one of them, over the number of source code entities (classes or methods) that
any of them affected. For instance, the distance between cc1 and cc2 is 1 (first
cell in Table 2) because their results differ for two classes. We see in Table 1 that
cc2 affected only class2, while cc1 affected only class3, out of the two classes
that were affected by any of these critics: class2 and class3.

Based on the boolean Table (shown in Table 1) and the distance table (shown
in Table 2) we proceed to discard pairs of critics that do not seem interesting

4 Spelling rules check the spelling on the identifiers of classes, methods, variables, and
comments. Given that these violations do not refer to the structure or design of the
the source code we discard them because they are likely to generate noise in the
results, and are non-critical for software development.

5 Tests were excluded because critics to their code are likely to be false positives. For
instance, duplicated code (which may occur due to calls to assert or other testing
methods) does not necessarily create hidden links to other test methods. Moreover,
test code tends to contain trial-and-error code which does not follow standard coding
practices.

SATToSE 2014– Angela Lozano, Gabriela Arévalo, Kim Mens 11

class1 class2 class3
cc1 0 0 1
cc2 0 1 0
cc3 0 1 1
cc4 1 0 0
cc5 1 0 1
cc6 1 1 0
cc7 1 1 1

Table 1. Code critics (cc) per class for a fictitious package.

cc1 cc2 cc3 cc4 cc5 cc6
cc2 1.0 - - - - -
cc3 0.5 0.5 - - - -
cc4 1.0 1.0 1.0 - - -
cc5 0.5 1.0 0.6 0.5 - -
cc6 1.0 0.5 0.6 0.5 0.6 -
cc7 0.6 0.6 0.3 0.6 0.3 0.3

Table 2. Distance among code critics shown in Table 1

for our analysis. Three criteria are used to discard pairs of code-critics. First,
pairs with high distances (greater than 0.9) are discarded as they do not tend to
co-occur and therefore are unlikely to represent a recommendation of a higher
level of abstraction. Second, pairs that occur always in the same source code
entities because they are likely to be different implementations of the same code
critic. Third, all pairs for which one of the code-critics covers more than 90% of
the source code entities analyzed because they will be automatically correlated
with all other code-critics and these relations are likely to generate only noise.

3 Results

We have generated graphs depicting the frequency in which code-critics appear
and the strength of their relation. The strength of the relation between a pairs
of critics is defined by its frequency (i.e., number of packages where the pair
of critics appears) and by the average of their distance (i.e., distance between a
pair of code-critics for all packages analyzed). The pairs with lowest distance and
highest frequency are analyzed first because they might reveal an undesirable
implementation pattern of a higher level of abstraction. So far we have identified
four patterns of relations between pairs of code critics. The first pattern occurs
when the critics are redundant. This happens when the critics find similar prob-
lems. In particular the following pairs refer to code critics in which only the first
one provides a refactoring for the critique:

– ‘detect:ifNone: − > anySatisfy:’ vs. ‘Uses detect:ifNone: instead of contains:’
– ‘Replace with allSatsify:, anySatisfy: or noneSatsify:’ vs. ‘Uses do: instead

of contains: or detect:’s’

12 Co-Occurring Code Critics

– Rewrite super messages to self messages when both refer to same method ’
vs. ‘Sends different super message’

The second pattern occurs when the critics positively contribute to another one,
without being an implication (i.e., solving one critic does not solve the other).
This happens when the critics have a common root cause. For instance,

– ‘Excessive number of variables’ vs. ‘Excessive number of methods’
– ‘Sends questionable message’ vs. ‘Excessive number of methods’

The third pattern occurs when the both critics need to be refactored. This hap-
pens when the critics have a common root cause. For instance,

– ‘Instance variables not read AND written’6 vs. ‘Variables not referenced ’7

– ‘Subclass responsibility not defined ’8 vs. ‘References an abstract class’9

The last pattern occurs when the code critics occur often together but they are
more useful as a separate rule (as it is more specific). For instance, ‘Inconsistent
method classification’ vs. ‘Unclassified methods’ which would be more useful as
‘inconsistently unclassified methods’.

Acknowledgments. Angela Lozano is financed by the CHaQ project of the
Innovatie door Weteschap en Tecnologie.

References

1. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, 1999.

2. R. Marinescu. Detecting design flaws via metrics in object oriented systems. In
Proc. of the Technology of Object-Oriented Languages and Systems (TOOLS), pages
173–182. 2001.

3. N. Moha, Y.-G. Gueheneuc, and P. Leduc. Automatic generation of detection al-
gorithms for design defects. In Proc. of the Int’l Conf. on Automated Software
Engineering (ASE), pages 297–300. IEEE Computer Society, 2006.

6 This critic should be divided to discriminate between variables readOnly, writeOnly,
or notReferenced

7 This critic hould refer to class variables only (instance variables would be caught by
the noReferenced subcritic of the other code critic)

8 This critic should be refined because as long as all leafs can see an implementation
of the method it should not be a bad-smell.

9 This critic should be refined into ‘refers to an abstract class’ and ‘uses it as instance
or with isKindOf’:.

SATToSE 2014– Angela Lozano, Gabriela Arévalo, Kim Mens 13

QwalKeko, a History Querying Tool

Reinout Stevens1 and Coen De Roover2

1 resteven@vub.ac.be Software Languages Lab, Vrije Universiteit Brussels, Belgium
2 cderoove@vub.ac.be Software Engineering Laboratory, Osaka University, Japan

In this paper we discuss the inner working of QwalKeko3[5], a history
querying tool that allows querying Java projects stored in Git. The tool allows
users to more easily query software projects and to reproduce studies on different
software projects. To this end, QwalKeko converts a Git repository into a graph
of versions, in which each version corresponds to the state of the stored software
project after a particular commit. Successive versions are connected directly.
This graph can be queried by using Qwal4, an implementation of regular path
expressions and Ekeko5[3], a logic programming query language.

1 Ekeko

Ekeko is a Clojure library for applicative logic meta-programming against an
Eclipse workspace. Ekeko has been applied successfully to answering program
queries (e.g., “does this bug pattern occur in my code?”), to analyzing project
corpora (e.g., “how often does this API usage pattern occur in this corpus?”), and
to transforming programs (e.g., “change occurrences of this pattern as follows”)
in a declarative manner.

Ekeko provides a library of predicates that can be used to query programs.
These predicates reify the basic structural, control flow and data flow relations
of the queried Eclipse projects, as well as higher-level relations that are derived
from the basic ones.

We limit our discussion to those predicates that reify structural relations
computed from the Eclipse JDT. Binary predicate (ast ?kind ?node), for instance,
reifies the relation of all AST nodes of a particular type. Here, ?kind is a Clojure
keyword denoting the capitalized, unqualified name of ?node’s class. Solutions
to the query (ekeko [?inv] (ast :MethodInvocation ?inv)) therefore comprise all
method invocations in the source code.

Ternary predicate (has ?propertyname ?node ?value) reifies the relation between
an AST node and the value of one of its properties. Here, ?propertyname is a Clojure
keyword denoting the decapitalized name of the property’s
org.eclipse.jdt.core.dom.PropertyDescriptor (e.g., :modifiers). In general, ?value
is either another ASTNode or a wrapper for primitive values and collections. This
wrapper ensures the relationality of the predicate.

3 https://github.com/ReinoutStevens/damp.qwalkeko
4 https://github.com/ReinoutStevens/damp.qwal
5 https://github.com/cderoove/damp.ekeko

2 Qwal

Qwal enables querying graphs using regular path expressions. Regular path
expressions are an intuitive formalism for quantifying over the paths through
a graph. They are akin to regular expressions, except that they consist of logic
conditions to which regular expression operators have been applied. Rather than
matching a sequence of characters in a string, they match paths through a graph
along which their conditions holds.

A Qwal query is launched using the function (qwal graph begin ?end [& vars] & goals).
It takes as arguments a graph object, a begin node, a logical variable that is uni-
fied with the end node of the expression, a vector of local variables available
inside the query and an arbitrary amount of goals. A graph object is a map that
contains two logical rules predecessors/2 and successors/2, which are called with
a bound first argument and bind the second argument to either the predecessors
or successors of the first argument. The goals in a query either specify conditions
that must hold in the current node of the query, or they move throughout the
graph changing the node against which conditions are checked. We provide an
excerpt of the available goals:

q=> Moves the current version to one of its successors.
q<= Moves the current version to one of its predecessors.
(qin-current & conditions) Conditions need to hold in the current version.

Conditions are regular core.logic predicates.
(q* & goals) Goals succeed an arbitrary, including zero, amount of times.
(q=>* & goals) Similar to q*, except an implicit q=> is added after goals. If goals

is empty this skips an arbitrary number of nodes.

Every goal is either a function or a macro that returns a logic rule. Such a
rule takes three arguments, namely the graph, the current node and an unbound
variable that must be bound to the new current node of the query. Users can
define their own goals by defining functions that adhere to this protocol.

3 QwalKeko

QwalKeko uses Qwal to navigate through a graph of versions, and Ekeko
to specify what conditions need to hold in a particular version. QwalKeko
features its own set of Qwal and Ekeko predicates that only make sense in the
context of history querying.

QwalKeko defines the following two Qwal goals: (in-git-info [c] & conditions)

and (in-source-code [c] & conditions). Both evaluate conditions in the current
version c. in-git-info only allows conditions that reason over information that
can be retrieved from Git without checking out that particular commit, such as
the commit message, author, timestamp and modified files. in-source-code also
allows reasoning over Git information, but also does a checkout of the code and
provides AST information. Currently, QwalKeko does not provide bindings for
its queried projects. Eclipse can only generate bindings when a project is built

SATToSE 2014– Reinout Stevens, Coen De Roover 15

without errors, and automatically setting up a project is not an easy feat. Li-
braries are not always included in the repository, nor can we easily deduce which
version of a library was used in a particular commit. QwalKeko used to use
partial program analysis [2] but this was too slow for large-scale querying.

The following query finds the compilation units (the root note of an AST) of
every modified file in all the versions of the queried software project:

1(qwalkeko* [?info ?cu ?end]
2 (qwal graph root ?end []
3 (q=>*)
4 (in-source-code [curr]
5 (fileinfo|edit ?info curr)
6 (fileinfo|compilationunit ?info ?cu curr))))

The first line uses qwalkeko*, which has a similar function as ekeko* in that
it configures the logic engine and specifies which variables will be the result of
the query. The second line configures the qwal engine. Both graph and root are
already bound, while ?end will be bound to the end version. On the third line
we skip an arbitrary number of versions. This pattern is functionaly equivalent
to mapping the rest of the query over all the versions in the graph. In the
last three lines we specify that we are interested in a modified file, as denoted
by fileinfo|edit/2, and its corresponding compilation unit. A fileinfo object
contains the path of a file and how it was changed (either added, removed or
modified).

3.1 ChangeNodes

QwalKeko provides an implementation of a tree distilling algorithm named
ChangeNodes6. It takes as input two AST nodes and outputs a minimal edit
script that, when applied, transforms the first AST into the second one. The
edit script will contain the following operations:

Insert A node is inserted in the AST
Delete A node is removed from the AST
Move A node is moved to a different location in the AST
Update A node is updated/replaced with a different node

The algorithm is based upon the work of Chawathe et. al [1] and has been
used in ChangeDistiller [4]. The main difference between ChangeNodes
and ChangeDistiller is that ChangeNodes works directly on top of the JDT
nodes. ChangeNodes uses a language-aware representation, while ChangeDis-
tiller uses a language-agnostic representation. ChangeNodes differs in its
matching strategy. During the matching phase nodes from the original AST are
matched with nodes in the target AST. Two nodes match when they are consid-
ered to be the same (even though their value may differ). When two AST nodes
match ChangeNodes will also match all mandatory properties of these nodes
We have not yet compared results from both implementations.

6 https://github.com/ReinoutStevens/ChangeNodes

16 QwalKeko, a History Querying Tool

QwalKeko introduces a new predicate (change ?change source target),
which binds ?change to a change operation between the source AST and tar-
get AST. Another predicate changes/3 is similar, but binds the first argument
to the whole list of operations between both ASTs.

The following code demonstrates how one can use this predicate:

1(qwal graph root ?end [?left-cu ?right-cu ?change]
2 (in-source-code [curr]
3 (ast :CompilationUnit ?left-cu))
4 q=>
5 (in-source-code
6 (compilationunit|corresponding ?left-cu ?right-cu)
7 (change ?change ?left-cu ?right-cu)))

On line 3 it binds ?left-cu to a compilation unit in the root version of the
graph. It moves to one of the successors of that version on line 4. On lines 5–6 we
retrieve the corresponding compilation unit using compilationunit|corresponding/2,
which looks for a compilation unit in the same package that defines the same
type. Finally we compute the changes between these two compilation units us-
ing change/3. We have successfully used QwalKeko to classify changes made
to Selenium files. This work is currently under revision at ICSM.

4 Conclusion

We have provided a short overview of the capabilities of QwalKeko. QwalKeko
allows querying over the history of software projects stored in Git. To this end,
it combines the programming query language Ekeko with regular path ex-
pressions, extended with several history predicates. The most important one is
change/3, which reifies change operations made to ASTs. It uses ChangeNodes,
which implements a tree differencing algorithmn on top of JDT AST nodes. We
have successfully used QwalKeko to identify changes made to Selenium files.

References

1. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection
in hierarchically structured information. In: Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD96). pp. 493–504 (1996)

2. Dagenais, B., Hendren, L.: Enabling static analysis for partial java programs. In: In
Proceedings of the 23rd ACM SIGPLAN conference on Object oriented program-
ming systems languages and applications (OOPSLA08) (2008)

3. De Roover, C., Stevens, R.: Building development tools interactively using the ekeko
meta-programming library. In: Proceedings of the CSMR-WCRE Software Evolu-
tion Week (CSMR-WCRE14) (2014)

4. Fluri, B., Würsch, M., Pinzger, M., Gall, H.C.: Change distilling: Tree differencing
for fine-grained source code change extraction. Transactions on Software Engineer-
ing 33(11) (2007)

5. Stevens, R., De Roover, C., Noguera, C., Jonckers, V.: A history querying tool and
its application to detect multi-version refactorings. In: Proceedings of the 17th Eu-
ropean Conference on Software Maintenance and Reengineering (CSMR13) (2013)

SATToSE 2014– Reinout Stevens, Coen De Roover 17

Evolution and dependencies of Hackage packages
Extended Abstract (Work in Progress) SATToSE 2014

Philipp Schuster and Ralf Lämmel

Software Languages Team
University of Koblenz-Landau, Germany

http://softlang.wikidot.com

1 Introduction

It is common practice to use a tool called Cabal to fetch and build libraries
from a central repository for Haskell libraries called Hackage. As these libraries
evolve, new versions of them are released as packages. Every package comes with
metadata about its dependencies. Since not every package is compatible with
every version of its dependencies, the metadata states a version range which
includes packages known to work, but also future packages expected to work.
The metadata also excludes packages known not to work and those expected not
to work.

When package authors introduce a breaking change, then they release a
package with an increased major version number that falls out of the range of
all packages depending on it. It is only when authors of depending packages
have ensured compatibility with the new version of the dependency that they
in turn release a new version of their package that includes the new version of
the dependency in the version range. This might be a breaking change in itself
and if the number of reverse dependencies is high cascade into a lot of work for
package maintainers.

It has been noted that not every change to a library that might be breaking
necessarily does so. A different policy has been proposed to exclude upper bounds
on the version ranges and only retroactively add them, when breakage actually
occurs. This is a controversial topic that has spawned many discussions. The
reason a breaking change might not affect a dependent package is that the
broken functionality is not even used. The idea now is to do more fine-grained
dependency analysis to find out how common this is. In order to do this we
need not only information about dependencies between packages but between
individual declarations.

The objective of this work is to support discussions around different versioning
policies with real world data gathered from Hackage. It also explores possible
ways to automate the detection of compatibility. More specifically, we formally
define, based on our data model, the following queries:

1. Are two declarations used interchangeably?
2. Is an update of the dependencies of a certain package safe?
3. Are two declarations in conflict and cannot be used together?

We then run these queries on the gathered data to find all concrete instances of
these situations.

Language-specific software repositories and even Hackage have been analysed
before; see, for example, [3, 5, 2]. However the questions these tried to answer were
different. There has also been work on conflicting software packages [1], but there
it is assumed that conflicts are accurately reflected by the version constraints.
Impact analysis on software repositories has been done before [4], but not across
packages.

2 Methodology

The dependencies between declarations are established by one declaration men-
tioning a symbol the other declaration declares. For example, a symbol could be
the name of a function or a data type. We also need the module the symbol comes
from and its genre (e.g., constructor, type, method, etc.) for disambiguation.

We extract the following facts:

1. For each package its set of dependencies.
2. For each package all declarations with their abstract syntax tree.
3. For each declaration all declared symbols.
4. For each declaration all mentioned symbols.

dependency ⊆ Package × Package
declaration ⊆ Package × Declaration
mentionedsymbol ⊆ Declaration × Symbol
declaredsymbol ⊆ Declaration × Symbol

ast ⊆ Declaration × AST
modulename ⊆ Symbol × ModuleName
symbolname ⊆ Symbol × SymbolName
genre ⊆ Symbol × Genre

Fig. 1. Extracted Relations

The data is inserted into a database. An example of the kind of query we run
against the database is given in Figure 2. This query is also used as part of more
complex queries.

We want to know whether a declaration D uses a declaration E by mentioning
a symbol S. This means there are two packages P and Q such that Q has to
be a dependency of P . Then the declaration D from package P mentions the
symbol S while the declaration E from package Q declares the same symbol S.

For reasons of scalability, at this stage of this work, we analyze a sample
of Hackage. We chose the forty libraries with the greatest numbers of reverse
dependencies because of their perceived relevance. We try to analyze all versions

SATToSE 2014– Philipp Schuster, Ralf Lämmel 19

uses(D,S,E) :-
 dependency(P,Q),
 declaration(P,D),
 mentionedsymbol(D,S),
 declaration(Q,E),
 declaredsymbol(E,S).

Fig. 2. Example Query

of these libraries with our custom processor which parses the source code and
performs name resolution to find the mentioned symbols. Unfortunately not all
of the packages and their dependencies can be parsed successfully. Table 3 has
a summary of the numbers of packages, declarations, distinct abstract syntax
trees, and symbols in our database, at the time of writing.

Packages 1149
Declarations 217007
Distinct abstract syntax trees 19167
Symbols 12407

Fig. 3. Numbers of entities in our database

3 Illustration

In our definition of a safe update two declarations are different, if the pretty
printings of their abstract syntax trees are different. That is, we consider ev-
ery change except reformatting to be a breaking change. This introduces false
negatives because there are different abstract syntax trees that are semantically
equivalent. One preliminary result is the detection of such abstract syntax trees.

Let’s assume all version bounds only include valid versions. Then, if two
declarations with the same abstract syntax tree might use two declarations with
different abstract syntax trees we call the two different abstract syntax trees
interchangeable. Figure 4 formally defines this.

If we run this query on the gathered data, we indeed find interchangeable
but different abstract syntax trees. Inspection reveals that the differences can be
classified into three kinds:

1. Changes in style with no semantic significance.
2. Backwards-compatible changes of interfaces.
3. Semantic changes that are probably benevolent (bugfixes).

Figure 5 shows two function definitions that are used interchangeably. They
obviously have the same semantics; it is just that the argument was renamed.

20 Evolution and Dependencies of Hackage Packages

itnerchangeable(E1,E2) :-
 uses(D1,S,E1),
 uses(D2,S,E2),
 ast(D1,AD1),ast(D2,AD2),
 AD1 = AD2,
 ast(E1,AE1),ast(E2,AE2),
 AE1 ≠ AE2.

Fig. 4. Query for interchangeable abstract syntax trees

unpack ps = build (unpackFoldr ps)

unpack bs = build (unpackFoldr bs)

Fig. 5. Two interchangeable function definitions

4 Concluding remarks

We want to find facts about the evolution and dependencies of Haskell packages.
To do this, we have gathered data from Hackage, the largest repository for Haskell
packages. We have then defined and executed queries against the data.

We have not yet implemented all the queries we would like to run. In particular
the query to find safe updates still needs work. The number of packages we analyse
will also be increased. The limiting factors here are build problems with our
custom compiler and the duration of one extraction run.

References

1. Artho, C., Cosmo, R.D., Suzaki, K., Zacchiroli, S.: Sources of inter-package conflicts
in debian. CoRR abs/1110.1354 (2011)

2. Bajracharya, S., Ossher, J., Lopes, C.: Sourcerer: An infrastructure for large-scale
collection and analysis of open-source code. Sci. Comput. Program. 79, 241–259 (Jan
2014), http://dx.doi.org/10.1016/j.scico.2012.04.008

3. Bezirgiannis, N., Jeuring, J., Leather, S.: Usage of generic programming on hack-
age: Experience report. In: Proceedings of the 9th ACM SIGPLAN Workshop on
Generic Programming. pp. 47–52. WGP ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2502488.2502494

4. Canfora, G., Cerulo, L.: Fine grained indexing of software repositories to support
impact analysis. In: Proceedings of the 2006 International Workshop on Mining
Software Repositories. pp. 105–111. MSR ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1137983.1138009

5. Raemaekers, S., Deursen, A.v., Visser, J.: The maven repository dataset of metrics,
changes, and dependencies. In: Proceedings of the 10th Working Conference on
Mining Software Repositories. pp. 221–224. MSR ’13, IEEE Press, Piscataway, NJ,
USA (2013), http://dl.acm.org/citation.cfm?id=2487085.2487129

SATToSE 2014– Philipp Schuster, Ralf Lämmel 21

Inheritance Usage in Java: A Replication Study

C. Aytekin, T. van der Storm
cigdem.aytekin2@student.uva.nl, storm@cwi.nl

Abstract

Inheritance is an important mechanism in object oriented languages. Quite some re-
search effort is invested in inheritance until now. Most of the research work about inheri-
tance (if not all) is done about the inheritance relationship between the classes. There is also
some debate about if inheritance is good or bad, or how much inheritance is useful. Tempero
et al. raised another important question about inheritance [TYN13]. Given the inheritance
relationships defined, they wanted to know how much of these relationships were actually
used in the system. To answer this question, they developed a model for inheritance usage
in Java and analysed the byte code of 93 Open Source Java projects from Qualitas Corpus
[TAD10]. The conclusion of the study was that inheritance was actually used a lot in these
projects - in about two thirds of the cases for subtyping and about 22 percent of the cases
for (what they call) external reuse. Moreover, they found out that downcall (late-bound
self-reference) was also used quite frequently, about a third of inheritance relationships in-
cluded downcall usage. They also report that there are other usages of inheritance, but
these are not significant.

In this study, we replicate the study of Tempero et al. using Rascal meta-programming
language. We use the inheritance model of the original study and also the open source
projects from Qualitas Corpus, but we analyse the Java source code instead of the byte
code. Our study is still in progress and therefore we do not report any results at the
moment.

1 Research Questions of the Original Study

RQ1: To what extent is late-bound self-reference relied on in the designs of
Java Systems? (The terms late-bound self-reference and downcall are
synonyms in the study.)

RQ2: To what extent is inheritance used in Java in order to express a subtype
relationship that is necessary to design?

RQ3: To what extent can inheritance be replaced by composition?
RQ4: What other inheritance idioms are in common use in Java systems?

2 Limitations of the Original Study

The limitations of the original study are as follows:

• The study is limited to Java classes and interfaces, exceptions, enums and annotations
are excluded,

• The third party libraries are not analysed,

• The edges between system types and non-system types are not modelled,

• Heuristics are used when defining framework and generics attributes,

• The authors use the Java byte code as input to their analysis tool, byte code may in
some cases incorrectly map to source code,

• They do make static code analysis and this may have impact on their down call results,
the results may be overstating the reality

3 Results

For Research Question 1: They conclude that late-bound self-reference plays a signifi-
cant role in the systems they studied - around a third (median 34 %) of CC edges
involve down calls.

For Research Question 2: At least two thirds of all inheritance edges are used as sub-
types in the program, the inheritance for subtyping is not rare.

For Research Question 3: The authors found that 22 % or more edges use external re-
use (without subtyping) and 2 % or more use internal re-use (without subtyping or
external reuse). They conclude that this result introduces opportunities to replace
inheritance with composition.

For Research Question 4: They also report some other uses of Java inheritance (con-
stant, generic, marker, framework, category and super), however the results show that
big majority of edges (87 %) in their Corpus can already be explained with one of the
subtype, external re-use, internal re-use uses and other usages do not occur frequently.

4 Definitions

4.1 System Type

A system type is created for the system under investigation. A non-system type or an
external type, on the other hand, is used in the system, but is not defined in the system.

4.2 User Defined Attribute

The descendant ascendant pair in an inheritance relationship has user defined attribute if
both of descendant and ascendant are system types.

4.3 CC, CI and II Attributes

The descendant-ascendant pair in an inheritance relationship in Java can have one of the
three attributes: CC (Class Class) - both descendant and ascendant are classes, CI (Class
Interface) - descendant is a class and ascendant is an interface or II (Interface Interface) -
both descendant and ascendant are interfaces.

4.4 Explicit Attribute

The inheritance relationship is described directly in the code.

4.5 Internal Reuse

Internal reuse happens when a descendant type calls a method or accesses a field of its
ascendant type.

4.6 External Reuse

External reuse is like internal reuse, except for that the access to a method or a field
happens not within the descendant type itself, but it happens in another type, on an object
of descendant type. According to the original study, the class in which the external reuse
occurs may not have any inheritance relationship with the descendant or ascendant type.

SATToSE 2014– Çiğdem Aytekin, Tijs van der Storm 23

4.7 Subtype

Subtype usage happens when an object of descendant type is supplied where an object of
ascendant type is expected. Subtype usage can occur in four occasions: when assigning ob-
ject(s), during parameter passing, when returning an object in a method or casting an object
to another type. Contrary to internal and external reuse, the place where the subtyping
occurs is not of any importance here.

There are two interesting cases of subtyping usage in Java (sideways cast and this chang-
ing type). Please see the original article [TYN13] for the definitions for these two specific
cases.

4.8 Downcall

The terms downcall and late-bound self-reference have the same meaning in the original
study. Downcall refers to the case when a method in the ascendant type (ascendant-method)
makes a call to another method (descendant-method) which is overridden by the descendant
type. When an object of descendant type calls the ascendant-method, the descendant-
method of the descendant type will be executed.

4.9 Other Uses of Inheritance

Next to reuse, subtype and downcall, the authors also defined other uses of inheritance:
Category, Constants, Framework, Generic, Marker and Super.

Category Category inheritance relationship is defined for the descendant ascendant pairs
which can not be placed under any other inheritance definition. (We should also note
that for this definition, ascendant type should be direct ascendant of the descendant
type, i.e. no types are defined between the two types in the inheritance hierarchy.) In
this case, we search for a sibling of the descendant which has a subtype relationship
with the ascendant. If we can find such a sibling, we assume that the ascendant is
used as a category class, and the descendant is placed under it for conceptual reasons.

Constants A descendant ascendant pair has constants attribute if the ascendant only
contains constant fields (i.e., fields with static final attribute). The ascendant
should either have no ascendant it self or if it has ascendants, the pair ascendant-
(grand)ascendant should also have constants attribute.

Framework A descendant-ascendant pair will have the framework attribute if it does not
have one of the external reuse, internal reuse, subtype or downcall attributes and the
ascendant is a direct descendant of a third party type. Moreover, the first type should
be direct descendant of the second type.

Generic Generic attribute is used for the descendant ascendant (for example : descendant
type R, and ascendant type S) pairs which adhere to the following:

1. S is parent of R. (i.e. S is direct ascendant of R.)

2. R has at least one more parent, say, T.

3. There is an explicit cast from java.lang.Object to S.

4. There is a subtype relationship between R and java.lang.Object

Marker Marker usage for a descendant-ascendant pair occurs when an ascendant has noth-
ing declared in it. Moreover, just like the constants definition, the ascendant should
either have no ascendants itself, or if it has ascendants, ascendant-(grand)ascendant
pairs should all have marker attribute. Ascendant should be defined as an interface
and descendant may be a class or an interface.

Super A descendant-ascendant pair will qualify for super attribute if a constructor of
descendant type explicitly invokes a constructor of ascendant type via super call.

24 Inheritance Usage in Java: A Replication Study

5 Metrics

The metrics are explained elaborately in the website of the original study [TYN08]

6 Replication Study

6.1 Research Questions of the Replication Study

Our research questions directly refer to the four research questions of the original study 1
and can be summarized as: How do our results differ from those of the original study?

6.2 Differences in the Study Set-up

Source code versus byte code: The biggest difference between the original and replica-
tion studies is about the input to analysis work.

Differences between the content of the byte code and the source code: It may be
possible that different set of classes or interfaces are included in binary and source
forms. One may rightfully expect that many classes and interfaces would be included
in both of the forms, however, there may be differences between the two.

Qualitas Corpus vs. Qualitas.class Corpus: The authors used the Qualitas Corpus
[TAD10], we also use the Corpus, but the compiled version of it Qualitas.class Corpus
[TMVB13b].

7 Code Analysis with Rascal

Code analysis in Rascal is straightforward and easy to understand. For example, getting the
list of methods which are called more than n times in a project is as easy as the following
in Rascal:

set[Declaration] pASTs =

createAstsFromEclipseProject(|project://cobertura-1.9.4.1|, true);

map [loc, num] mMap = ();

for (anAST <- pASTs) {

visit (anAST) {

case m1:\methodCall(_, _, _, _) : {

if (m1@decl in mMap)

{ mMap[m1@decl] = mMap[m1@decl] + 1; }

else { mMap += (m1@decl : 1) ; }

}

case m2:\methodCall(_,_,_) : {

if (m2@decl in mMap)

{ mMap[m2@decl] = mMap[m2@decl] + 1; }

else { mMap += (m2@decl : 1); };

}

}

}

map [loc, num] fMethods =

(aMethod : mMap[aMethod] | aMethod <- mMap, mMap[aMethod] > 400);

println("Frequently called methods:"); iprintln(fMethods);

SATToSE 2014– Çiğdem Aytekin, Tijs van der Storm 25

References

[TAD10] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. Qualitas corpus: A curated collection of java code for
empirical studies. In 2010 Asia Pacific Software Engineering Conference (APSEC2010),
pages 336–345, December 2010.

[TMVB13b] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and Roberto S.
Bigonha. Qualitas.class Corpus: A compiled version of the Qualitas Corpus. Software
Engineering Notes, 38(5):1–4, 2013.

[TYN08] Ewan D. Tempero, Hong Yul Yang, and James No-
ble. Inheritance Use Data. Inheritance Use Data, 2008. URL:
https://www.cs.auckland.ac.nz/ ewan/qualitas/studies/inheritance/.

[TYN13] Ewan D. Tempero, Hong Yul Yang, and James Noble. What programmers do with
inheritance in java. In Giuseppe Castagna, editor, ECOOP, volume 7920 of Lecture
Notes in Computer Science, pages 577–601. Springer, 2013.

26 Inheritance Usage in Java: A Replication Study

Mining metrics for understanding
metamodel characteristics

Juri Di Rocco

DISIM University of L’Aquila,
juri.dirocco@univaq.it

Abstract. Metamodels are a key concept in Model-Driven Engineering.
Any artifact in a modeling ecosystem has to be defined in accordance to
a metamodel prescribing its main qualities. Hence, understanding com-
mon characteristics of metamodels, how they evolve over time, and what
is the impact of metamodel changes throughout the modeling ecosystem
is of great relevance. Similarly to software, metrics can be used to obtain
objective, transparent, and reproducible measurements on metamodels
too. In this work, we present an approach to understand structural char-
acteristics of metamodels. A number of metrics are used to quantify and
measure metamodels and cross-link different aspects in order to provide
additional information about how metamodel characteristics are related.
The approach is applied on repositories consisting of more than 450 meta-
models.

Keywords: Model Driven Engineering, metamodeling, metamodel met-
rics

1 Introduction

Metamodels are a key concept in Model-Driven Engineering [12]. Almost any
artifact in a modeling ecosystem [6] has to be defined in accordance to a meta-
model, which represents an ontological descriptions of application domains [5].
Metamodels are important because they formally define the modeling primitives
used in modeling activities and represent the trait-d’union among all constituent
components.

Despite the relevance of metamodels, little research has been undertaken
on their empirical analysis. Understanding common characteristics of metamod-
els, how they evolve over time, and what is the impact of metamodel changes
throughout the modeling ecosystem is key to success. Several approaches have
been already proposed to analyse models [11] and transformations [1,13] with
the aim of assessing quality attributes, such as understandability, reusability, and
extendibility [4]. Similarly, there is the need for techniques to analyse metamod-
els as well in order to evalutate their structural characteristics and the impact
they might have during the whole metamodel life-cycle especially in case of meta-
model evolutions. To this end, some works [8,10] propose the adoption of metrics
for analysing metamodels as typically done in software development by means
of object-oriented measurements [7].

Fig. 1. Overview of the process for metamodel analysis

2 Measuring metamodels

In the follow, we describe the process we have applied to identify linked struc-
tural characteristics and to understand how they might change depending on
the nature of metamodels. The first step of the proposed process consists of
the application of metrics on a data set of metamodels. Concerning the applied
metrics we borrowed those in [8] and added new ones by leading to a set of 28
metrics. The corpus of the analyzed metamodels has been obtained by retriev-
ing metamodels from different repositories, i.e., EMFText Zoo [3], ATLZoo [2],
Github, GoogleCode. Such metamodels have been downloaded from [9] for a
total number of 466 metamodels belonging to different technical spaces and do-
mains. Afterwards all the calculated metrics are correlated by using statistical
tools. Finally, the collected data are analysed in order to cross-link struc- tural
characteristics of metamodels (e.g., how the adoption of hier- archies changes
with the number of metaclasses, and how the size of structural features typically
changes depending on the introduc- tion of abstract metaclasses).

Correlation is probably the most widely used statistical method to detect
cross-links and assess relationships among observed data. There are different
techniques and indexes to discover and measure correlations. We have consid-
ered the Pearsons and Spearmans coefficients to measure the correlations among
calculated metamamodel metrics.

Our purposes are analises how the most correlated metamodel metrics have
been identified and selected. For each couple we have selected the coefficient
index (between Pearson and Spearman) having the higher correlation value. In
this section we discuss some relevant correlations we have identified as described
in the previous section. This permits to draw interesting conclusions about how
some structural metamodel char acteristics are coupled.

In this work, we proposed a number of metrics which can be used to acquire
objective, transparent, and reproducible measurements of metamodels. The ma-
jor goal is to better understand the main characteristic of metamodels, how they
are coupled, and how they change depending on the metamodel structure. A cor-
relation analysis has been performed to identify the most cross-linked metrics,
which have, in turn, been computed over 450 metamodels summarized in Table 1

– the adoption of inheritance is proportional to the size of metamodels;

– the number of metaclasses with supertypes are inversely proportional to the
average number of structural features;

– the number of metaclasses with supertypes is proportional to the number of
metaclasses without attributes or references; finally,

28 Mining Metrics for Understanding Metamodel Characteristics

Correlated Metrics

↑ usage of inheritance ↑ metamodel size

↑ #metaclasses w/ supertypes ↓ avg. #features

↑ #metaclasses w/ supertypes ↑ #metaclasses w/o features
Table 1. Summary of correlated metrics

– isolated metaclasses are not commonly used apart from testing or educational
purposes.

Threats to validity are present and cannot be neglected. In particular, the
metamodels are mainly from academic repositories, since it is not easy to col-
lect metamodels from industry. Even though complex metamodels like UML,
MARTE, and BPMN are part of the analyzed corpus, we cannot claim that the
results of our analysis apply to industrial metamodels in general. The difficulty is
principally due to the proprietary nature of these artifacts representing a strate-
gic and valuable asset for the holder. Nevertheless, we intend to overcome at
some extent this problem and apply the approach also on this kind of metamod-
els: comparing the results with those obtained from the academic metamodels
might reveal interesting differences and make the results more generally valid.

3 Future Work

One of the main goal in the next future is to extend the approach to analyse the
characteristics of coupled modeling artifacts, e.g., how structural characteristics
of metamodels affect those of model transformations or any metamodel-based
artifact. An transformation will take a set of model as input and will produce
a set of model as output. Both input and output models are conform to its
metamodel. Therefore transformation domani and co-domain are metamodel,
so there are reference from metamodel and trasformation. Likewise metamodel
process analisys, we need to select corpus and metrics for transformation. Our
analytical work wants to focus on the correlations that may exist between the
calculated metrics on metamodels and those calculated on the transformations.
The analysis process will be very similar to the one shown in this work. The
long term goal of this work is to define an approach able to estimate or even
predict the cost of developing or refining modeling artifacts by considering the
structural characteristics of the corresponding metamodels.

References

1. van Amstel, M., van den Brand, M.: Quality assessment of atl model transfor-
mations using metrics. Proceedings of the 2nd International Workshop on Model
Transformation with ATL (MtATL 2010), Malaga, Spain (June 2010) (2010)

2. ATLAS Group: ATL Transformations Zoo. http://www.eclipse.org/m2m/atl/atlTransformations/

SATToSE 2014– Juri Di Rocco 29

3. ATLAS Group: EMFTEXT Concrete Syntaxes Zoo. http://emftext.org/index.
php/EMFText_Concrete_Syntax_Zoo$

4. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment 28, 4 (Jan 2002)

5. Chandrasekaran, B., Josephson, J., Benjamins, V.: What are ontologies, and why
do we need them? Intelligent Systems and their Applications, IEEE 14(1), 20–26
(1999)

6. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary togetherness: how to man-
age coupled evolution in metamodeling ecosystems. In: Intl. Conf. on Graph Trans-
formations (ICGT 2012). LNCS, vol. 7562. Springer (2012)

7. Harrison, R., Counsell, S., Nithi, R.: An evaluation of the mood set of object-
oriented software metrics. IEEE Transactions on Software Engineering 24, 491–496
(1998)

8. James, W., Athansios, Z., Nicholas, M., Louis, R., Dimitios, K., Richard, P., Fiona,
P.: What do metamodels really look like? Frontiers of Computer Science (2013)

9. James Williams: James r. williams corpus. http://www.jamesrobertwilliams.co.uk/mm-
analysis/resources/metamodel-corpus-20130722.zip

10. Ma, Z., He, X., Liu, C.: Assessing the quality of metamodels. Frontiers of Computer
Science 7(4), 558–570 (2013), http://dx.doi.org/10.1007/s11704-013-1151-5

11. Monperrus, M., Jézéquel, J.M., Champeau, J., Hoeltzener, B.: Model-Driven
Software Development. IGI Global (Aug 2008), http://www.igi-global.com/

chapter/measuring-models/26829/

12. Schmidt, D.: Guest Editor’s Introduction: Model-Driven Engineering. Computer
39(2), 25–31 (2006)

13. Vignaga, A.: Metrics for measuring atl model transformations. Tech. rep. (2009)

30 Mining Metrics for Understanding Metamodel Characteristics

A Taxonomy for Bidirectional Model Transformation
and Its Application

Romeo Marinelli

DISIM - Università degli Studi dell’Aquila, Via Vetoio, Coppito I-67010, L’Aquila, Italy
romeo.marinelli@univaq.it

Abstract. In Model Driven Engineering bidirectional transformations are con-
sidered a core ingredient for managing both the consistency and synchronization
of two or more related models. However, current languages still lack of a com-
mon understanding of its semantic implications hampering their applicability in
practice. In this paper, relevant properties pertaining bidirectional model trans-
formations are illustrated. It is based on the discussions of a working group on
bidirectional model transformation of the Dagstuhl seminar on Language En-
gineering for Model-Driven Software Development (2005, 2008 and 2011) and
characteristics of main existing tools for BX. This taxonomy can be used, among
others, to help developers in deciding which model transformation language or
tool is best suited to carry out a particular model transformation activity.

1 Introduction

Model Driven Engineering (MDE) is a software engineering discipline in which
models are the primary artifacts and play a central role throughout the entire develop-
ment process. Model transformations are the core MDE mechanism for building soft-
ware from design to code, and hence have a significant impact on the software develop-
ment process. They are used for different reasons and intents, e.g., to extract different
views from a model (query), add or remove detail (refinement or abstraction), generate
code from model (synthesis). One of the best ways to combat complexity of software
development is through the use of abstraction, problem decomposition, and separation
of concerns. The practice of software modeling has become a major way of imple-
menting these principles. Model-driven approaches to systems development move the
focus from third-generation programming language (3GL) code to models (in particular
models expressed in UML and its profiles).

Working with multiple, interrelated models that describe a software system require
significant effort to ensure their overall consistency. It follows that automating the task
of model consistency checking and synchronization would greatly improve the produc-
tivity of developers and the quality of the models [15]. In addition to vertical and hor-
izontal model synchronization, the burden of many activities of software development,
could be significantly reduced through automation.

Many of these activities can be performed as automated processes, which take one
or more source models as input and produce one or more target models as output, fol-
lowing a set of transformation rules [7]. We refer to this process as model transforma-
tion. For the model-driven software development vision to become reality, tools must

be able to support the automation of model transformations. Development tools should
not only offer the possibility of applying predefined model transformations on demand,
but should also offer a language that allows (advanced) users to define their own model
transformations and then execute them on demand. Beyond transformation execution
automation, it would also be desirable that tools could make suggestions as to which
model transformations could be appropriately applied in a given context, but this aspect
is very ambitious and out of the scope of this article.

Bidirectionality is a relevant aspects in model transformations: often it is assumed
that during development only the source model of a transformation undergoes modifica-
tions, however in practice it is necessary for developers to modify both the source and
the target models of a transformation and propagate changes in both directions [13,
15]. A number of approaches and languages have been proposed due to the intrinsic
complexity of bidirectionality. Each one of those languages is characterized by a set
of specific properties pertaining to a particular applicative domain [14]. Unfortunately,
the existing approaches are affected by the intrinsic characteristics of model transfor-
mations, that have been only partially considered by research. In order to decide which
model transformation approach is most appropriate for addressing a particular problem,
a number of crucial questions need to be answered. The following subsections investi-
gate a particular question, and suggest a number of objective criteria to be taken into
consideration to provide a concrete answer to the question. Based on his requests, the
developer can then select the model transformation approach that is most suited for his
needs. In this paper we propose a taxonomy of bidirectional model transformation (BX).
Such a taxonomy is particularly useful to help a software developer choosing a partic-
ular model transformation approach that is best suited for his needs. The taxonomy is
based on the discussions of a working group of the Dagstuhl seminar on Language En-
gineering for Model-Driven Software Development 2005 and 2011 [2, 8]. In this paper
we want to adapt and improve that taxonomy to bidirectional model transformations.
Finally, we will apply these characteristics to the main tool for existing BX: TGG, QVT,
Lenses, JTL and GRound-Tram.

2 Model transformation taxonomy

In order to decide which bidirectional model transformation approach is most appro-
priate for addressing a particular problem, a number of crucial questions need to be an-
swered. This section investigate and suggest a number of objective criteria to be taken
into consideration to provide a concrete answer to the question. Based on the answers,
the developer can then select the model transformation approach that is most suited
for his needs. This section provides the evaluation criteria for model transformations
extending the work of Mens and Gorp [10, 11, 9]. The goal of model transformations
is to automatically generate different views of a system from a source model and to
support the code generation. Both the target model and the transformation rules can
be evaluated according to some basic principles derived from software engineering. In
general, a bidirectional transformation is required to keep all views synchronized with
the underlying system by supporting and automatically propagating changes in both
directions.

32 A Taxonomy of Bidirectional Model Transformation and Its Application

The BX taxonomy has been developed by means a comparision grid. It has been
build by using both existing papers in literature [8, 3–5, 1, 12] and analyzing the main
existing tools [6, 1].

The grid has been built considering parameters divided in three main category: gen-
eral requirements (GR), functional requirements (FR) and non functional requirements
(NFR).

-general requirements GR: level of automation, complexity of the transformation,
visualization, level of industry application, maturity level;

-functional requirements FR: correctness of the transformations, inconsistency man-
agement, modularity (compositional/non compositional), traceability, change propaga-
tion, incrementality, uniqueness of transformation, termination of transformation, sym-
metric/asymmetric behavior of transformation, type of artifact, data model, endoge-
nous/exogenous, transformation mechanisms, in-place/out-of-place transformations;

-non functional requirements NFR: extensibility/modifiability, usability and utility,
scalability, robustness verbosity and conciseness, interoperability, reference platform
(standardizzation), verificability and validity of a transformation.

3 Tools used

List of useful tools: eMoflon (TGG), EMORF (TGG), QVT-R (Medini), Boomerang
(Lenses), JTL, GRound-Tram and BiFlux.

4 Grid application

Each tool will be analyzed by using the grid mentioned above.

5 Conclusions and future developments

As future developments, it can extend the comparision grid and to consider other
tools to BX.

References

1. A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Jtl: a bidirectional and change
propagating transformation language. In 3rd International Conference on Software Lan-
guage Engineering (SLE), Oct. 2010. to appear.

2. K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Terwilliger. Bidirectional
Transformations: A Cross-Discipline Perspective—GRACE meeting notes, state of the art,
and outlook. In ICMT2009 - International Conference on Model Transformation, Proceed-
ings, volume 5563 of LNCS, pages 260–283. Springer, 2009.

3. J. Foster, M. Greenwald, J. Moore, B. Pierce, and A. Schmitt. Combinators for bidirec-
tional tree transformations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst., 29(3), 2007.

SATToSE 2014– Romeo Marinelli 33

4. J. N. Foster. Bidirectional Transformation Languages. PhD thesis, University of Pennsylva-
nia, 2010.

5. S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano. Groundtram: An integrated framework
for developing well-behaved bidirectional model transformations. In P. Alexander, C. S.
Pasareanu, and J. G. Hosking, editors, ASE, pages 480–483. IEEE, 2011.

6. S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Towards a compositional approach to model
transformation for software development. In S. Y. Shin and S. Ossowski, editors, SAC, pages
468–475. ACM, 2009.

7. S. Hildebrandt, L. Lambers, H. Giese, J. Rieke, J. Greenyer, W. Schäfer, M. Lauder, A. An-
jorin, and A. Schürr. A survey of triple graph grammar tools. In Second International
Workshop on Bidirectional Transformations (BX 2013), volume 57, pages 1–18. EC-EASST,
2013.

8. Z. Hu, A. Schürr, P. Stevens, and J. F. Terwilliger. Bidirectional transformation ”bx”
(dagstuhl seminar 11031). Dagstuhl Reports, 1(1):42–67, 2011.

9. T. Mens. Model transformation: A survey of the state-of-the-art. In S. Gerard, J.-P. Babau,
and J. Champeau, editors, Model Driven Engineering for Distributed Real-Time Embedded
Systems. Wiley - ISTE, 2010.

10. T. Mens and P. V. Gorp. A taxonomy of model transformation. Electronic Notes in Theoret-
ical Computer Science, 152:125–142, March 2006.

11. T. Mens, P. V. Gorp, D. Varro, and G. Karsai. Applying a model transformation taxon-
omy to graph transformation technology. Electronic Notes in Theoretical Computer Science,
152:143–159, March 2006.

12. A. Schürr. Specification of graph translators with triple graph grammars. In in Proc.
of the 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG ‘94),
Herrsching (D. Springer, 1995.

13. P. Stevens. A Landscape of Bidirectional Model Transformations. In R. Lämmel, J. Visser,
and J. Saraiva, editors, GTTSE 2007, Braga, Portugal, July 2-7, volume 5235 of Lecture
Notes in Computer Science, pages 408–424. Springer, 2008.

14. P. Stevens. Bidirectional model transformations in qvt: semantic issues and open questions.
Software and Systems Modeling, 8, 2009.

15. Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards automatic model
synchronization from model transformations. In R. E. K. Stirewalt, A. Egyed, and B. Fischer,
editors, ASE, pages 164–173. ACM, 2007.

34 A Taxonomy of Bidirectional Model Transformation and Its Application

Managing uncertainty in bidirectional transformations

Gianni Rosa

DISIM University of L’Aquila, Via Vetoio, 67100, Italy,
gianni.rosa@univaq.it

Abstract. In Model-Driven Engineering, the potential advantages of using bidi-
rectional transformations are largely recognized. A key aspect is the non-deterministic
nature of bidirectionality: consistently propagating changes from one side to the
other is typically non univocal as more than one correct solution is admitted.
In the paper, the problem of uncertainty in bidirectional transformations is dis-
cussed. In particular, we illustrate a uniform characterization of the representa-
tion of a family of cohesive models deriving from a transformation by means of
models with uncertainty as already known in literature.

1 Introduction
In Model-Driven Engineering [11] (MDE), the potential advantages of using bidirec-
tional transformations in various scenarios are largely recognized. As for instance, as-
suring the overall consistency of a set of interrelated models which requires the ca-
pability of propagating changes back and forth the transformation chain [12]. Despite
its relevance, bidirectionality has rarely produced anticipated benefits as demonstrated
by the lack of a leading language comparable, for instance, to ATL for unidirectional
transformations due to the ambivalence concerning non-bijectivity. In fact, consistently
propagating changes from one side to the other is typically non univocal as more than
one correct solution is admitted and this gives place to a form of uncertainty.

Uncertainty is one of the main problem in software industry. Typically it occurs
when the designer has not complete, consistent and accurate information required to
make a decision during software development. In this paper we discuss about uncer-
tainty indirectly generated as outcome of a model transformation process. In fact, when
the transformation writer is not able to take some decisions, the specification can be left
incomplete (e.g., constraints are missing) and more than one design alternatives may
be obtained. Problems that originate uncertainty are common, from one hand, designer
may be unsure about the mapping between some source and target elements, as a con-
sequence the transformation is left incomplete and ambiguous mapping may cause the
generation of multiple solution models each one representing a different design deci-
sion. On the other hand, during the transformation writing the designer may ignore that
some information are missing and/or ambiguous. The designer can understand it only
at execution time.

The paper is organized as follows. Section 2 introduces the concept of uncertainty
and the main issues related to it by means of an example; In Section 3 we discuss how
support uncertainty in bidirectional tranformation. Finally, Section 4 describes related
work and draws some conclusions.

2 A motivating scenario
In order to better understand the above concepts, let us considering a typical scenario of
round-trip engineering (RTE) [7]. The difficulty faced with RTE is the often neglected,

transformations are in general neither total nor injective. In other words, there are con-
cepts in the source model that do not have a univocal correspondence in the target model
and/or vice versa.

Take care the concept of uncertainty, in the following example we consider the Col-
lapse/Expand State Diagrams benchmark defined in the GRACE International Meeting
on Bidirectional Transformations [3]: starting from a hierarchical state diagram (in-
volving some nesting) as the one reported in Figure 1(a), the bidirectional transforma-
tion yields a flat view provided in Figure 1(b). The main goal of the transformation
is that any manual modifications on the (target) flat view should be back propagated
and eventually reflected in the (source) hierarchical view. For instance, let us suppose
the designer modifies the flat view by (see ∆ change in Figure 1(c)): 1) adding the
new state Printing, 2) adding the print transition that associates Active state to
the latter, and 3) modifying the source of the done transition from the Active state
to the Printing state. Then, in order to persist such a refinement to new executions
of the transformation, the hierarchical state machine has to be consistently updated as
illustrated in Figure 1(d).

We suppose that during the transformation writing, the designer has not finalized
the exact behavior of the system, due to vague requirements given by the customer,
such that an ambiguous mapping involving the new print transition is given. As a
consequence, the back propagation of changes to hierarchical state machine gives place
to an interesting situation: the new transition print can be equally mapped to each
one of the nested states within Active as well as to the container state itself. In this
way, more than one valid alternative may be proposed as output of the transformation
(non-determinism), leaving the designers the choice for a suitable solution.

Fig. 1. Collapse/expand state diagrams in a round-trip process

3 Supporting uncertainty in bidirectional transformation
The need to express uncertainty about model content has been studied in different works
[6, 9], where models seldom provide the means for expressing uncertainty. We are cur-
rently working on an approach to represent uncertainty as models, that can be taken as
input by general purpose theories and tools in a MDE setting and that abstracts from the
calculation method and allowing to harness the potential offered by generic modeling
platforms (for instance [1]).

36 Managing Uncertainty in Bidirectional Transformations

Fig. 2. The modified SM target model and the correspondent HSM source models

Considering a set of concrete model solutions generated by means of the JTL [2]1,
conforms to a given metamodel MM, we aim to automatically derive a new metamodel
U-MM able to specify uncertainty in models. In particular, U-MM has to provide the
constructs able to express uncertain models consisting of a base-part model which con-
tains the elements common to each concrete model and a set of point of uncertainty
which collects the alternative concrete model elements. For instance, considering the
set of alternatives depicted in the right side of Figure 2 may be expressed as a unique
model containing uncertainty and conform to the U-HSM metamodel derived from the
target HSM metamodel and able to represent all the concretizations resulting from JTL
transformation engine.

4 Related work and conclusions
Uncertainty is one of the factors prevalent within contexts as requirements engineering
[4], software processes [8] and adaptive systems [10]. Uncertainty management has
been studied in many works, often with the aim to express and represent it in models.

1 JTL is a constraint-based model transformation language specifically tailored to support bidi-
rectionality

SATToSE 2014– Gianni Rosa 37

In [5] partial models are introduced to allow designers to specify uncertain information
by means of a base model enriched with annotations and first order logic. As discussed
in this paper, modelers may need to encode ambiguities in their model transformation
and obtain multiple design alternatives in order to choose among them. In contrast with
this requirement, most existing bidirectional model transformation languages deal with
non-determinism by requiring designers to write non-ambiguous mappings in order to
obtain a deterministic result. Recently some interesting solutions have been proposed as
based on lenses, unfortunately, the management of non-bijective problems is not clearly
addressed, even though it could be theoretically supported by means of delta merging
and conflict resolution.

Bidirectional model transformations represent at the same time an intrinsically dif-
ficult problem and a crucial mechanism for keeping consistent and synchronized a num-
ber of related models. In this paper, we tackle the problem of non-determinism in bidi-
rectional transformations focusing on the concept of uncertainty, which represent one
of the prevalent factors within software engineering. When modelers are not able to
fix a design decision they may encode ambiguities in their model transformation spec-
ification, e.g. not providing additional constraints that would make the transformation
deterministic. In this work we have made an attempt to help designers to give an uni-
form characterization of the solution in terms of models with uncertainty as already
known in literature.

References
1. J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the Large and Modeling

in the Small. In Procs of European MDA Workshops, volume 3599 of LNCS, pages 33–46.
Springer, 2004.

2. A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. JTL: a bidirectional and change
propagating transformation language. In SLE10, 2010.

3. K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Terwilliger. Bidirectional
Transformations: A Cross-Discipline Perspective - GRACE meeting notes, state of the art,
and outlook. In Procs. of ICMT2009, volume 5563 of LNCS, pages 260–283. Springer, 2009.

4. C. Ebert and J. D. Man. Requirements uncertainty: influencing factors and concrete improve-
ments. In Procs. of ICSE, pages 553–560. ACM Press, 2005.

5. M. Famelis, R. Salay, and M. Chechik. Partial models: Towards modeling and reasoning
with uncertainty. In ICSE, pages 573–583, 2012.

6. M. Famelis, R. Salay, A. D. Sandro, and M. Chechik. Transformation of models containing
uncertainty. In MoDELS, pages 673–689, 2013.

7. T. Hettel, M. Lawley, and K. Raymond. Model Synchronisation: Definitions for Round-Trip
Engineering. In Procs. of ICMT 2008, 2008.

8. H. Ibrahim, B. H. Far, A. Eberlein, and Y. Daradkeh. Uncertainty management in software
engineering: Past, present, and future. In CCECE, pages 7–12. IEEE, 2009.

9. R. Salay, M. Chechik, J. Horkoff, and A. D. Sandro. Managing requirements uncertainty
with partial models. Requir. Eng., 18(2):107–128, 2013.

10. P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. Requirements-aware sys-
tems: A research agenda for re for self-adaptive systems. In RE, pages 95–103. IEEE, 2010.

11. D. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer, 39(2):25–
31, 2006.

12. S. Sendall and W. Kozaczynski. Model Transformation: The Heart and Soul of Model-Driven
Software Development. IEEE Software, 20(5):42–45, 2003.

38 Managing Uncertainty in Bidirectional Transformations

Automated chaining of model transformations with
incompatible metamodels

Francesco Basciani ?

Department of Information Engineering Computer Science and Mathematics
University of L’Aquila, Italy

francesco.basciani@graduate.univaq.it

Abstract. In Model-Driven Engineering (MDE) the development of complex
and large transformations can benefit from the reuse of smaller ones that can be
composed according to user requirements. Composing transformations is a com-
plex problem: typically smaller transformations are discovered and selected by
developers from different and heterogeneous sources. Then the identified trans-
formations are chained by means of manual and error-prone composition pro-
cesses. In this paper we propose an approach to automatically discover and com-
pose transformations: developers provide the system with the source models and
specify the target metamodel. By relying on a repository of model transforma-
tions, all the possible transformation chains are calculated. Importantly, in case of
incompatible intermediate target and source metamodels, proper adapters are au-
tomatically generated in order to chain also transformations that otherwise would
be discarded by limiting the reuse possibilities of available transformations.

1 Introduction

In MDE, model transformations play a key role and in order to enable their reusability,
maintainability, and modularity, the development of complex transformations should be
done by composing smaller ones [1]. The common way to compose transformations is
to chain them [2,1,3,4,5], i.e., by passing models from one transformation to another.

MM1 MM2

MM1toMM2 m1 m2

MM3

MM2toMM3 m3

Fig. 1. Model transformation chain example

Figure 1 shows an explanatory model transformation chain. In particular, MM1toMM2

is a model transformation that generates models conforming to the target metamodel
MM2 from models conforming to MM1. Additionally, MM2toMM3 is a model transforma-
tion that generates models conforming to MM3 from models conforming to the source
? Davide Di Ruscio, Ludovico Iovino and Alfonso Pierantonio

metamodel MM2. Since the input metamodel of MM2toMM3 is also the output metamodel
of MM1toMM2, then these two transformations can be chained as shown in Fig. 1.

The definition of transformation chains rely on the concept of compatible metamod-
els [2] as defined below.

Definition 1 (metamodels compatibility). Let MM1 and MM2 be two metamodels,
then MM1 and MM2 are compatible if MM1 ⊆ MM2 or MM2 ⊆ MM1.

Definition 2 (transformation composability). Let T1 : MM1 → MM2 be a model
transformation from the metamodel MM1 to the metamodel MM2, and let T2 : MM3 →
MM4 be a model transformation from the metamodel MM3 to the metamodel MM4.
Then, T1 and T2 are composable as T1 ◦ T2(T2 ◦ T1) if MM4 ⊆ MM1 (MM2 ⊆ MM3).

Unfortunately, restricting the definition of transformation chains only for the cases of
compatible metamodels can reduce the number of chains that might be potentially ob-
tained. Because of the metamodels compatibility concept previously defined, the trans-
formations Grafcet to PetriNet1.0 and PetriNet2.0 to PNML are not composable since
PetriNet1.0 6⊆ PetriNet2.0 and PNML 6⊆ Grafcet. However, by analyzing the two ver-
sions of the PetriNet metamodel it is possible to notice that there are many commonal-
ities that might be exploited to increase the possible transformation chains (will see the
main differences in the following).

In this paper, we propose an approach that under certain conditions permits to chain
model transformations defined on incompatible metamodels. This is done by means of
an adapter transformation that can be automatically synthesized from a delta model
representing the differences between the output and input metamodels of the transfor-
mations to be chained. By relying on a repository of model transformations, the system
is able to automatically retrieve the model transformations that can be chained to satisfy
the user request.

2 Automating Model Transformations Chaining

User request
Execution of the derived

model transformations chain

Derivation of the
model transformations chain

Discovery of required
model transformations

1

2

Target
metamodel

Source
model

Fig. 2. Proposed model transformations chaining process

Our approach exploit and com-
plement existing works by ad-
vancing the state-of-the-art in
two different directions: (i) the
user gives as input only the
source model and the target me-
tamodel, and the system auto-
matically derives the possible
chains that can satisfy the user
request, (ii) under certain con-
ditions the proposed approach is
able to generate chains that include non-compatible transformations through synthetised
metamodel adapters, as shown in Fig. 2.

40 Automated Chaining of Model Transformations with Incompatible Metamodels

MM1

MM2

MM3

MM4 ...

...

T1

T2

T3

T4

T5

…

Grafecet
PetriNet

1.0

XML

Grafcet_to_PetriNet1.0 PetriNet1.0_to_XML

Grafcet
PetriNet

1.0

XML

Grafcet_to_PetriNet1.0 PetriNet1.0_to_XML

MM1
MM3

MM2

PetriNet
2.0

PNML

PetriNet2.0_to_PNML

MM4 MM5 ...

…

Grafcet_to_MM3

PNML_to_XML

PNML_to_ MM5 MM1_to_MM2

MM4_to_MM2

PetriNet1.0_to_MM1
MM1_to_PetriNet1.0

AdapterPetriNet 1.0, PetriNet2.0

Fig. 3. Graph-based structure of a simple model transfor-
mations repository

Discovery of the required model
transformations The whole ac-
tivity 1 in Fig. 2 is enabled by a
novel repository of model trans-
formations, which are stored in
a directed graph-based structure
as shown in Fig. 3. The nodes
in the figure represent metamod-
els, whereas the arcs represent
all the available model transfor-
mations in the repository.

Derivation of model transformation chains Representing all the available transforma-
tions as shown in Fig. 3 permits to deal with the problem of deriving a transformation
chain from a source metamodel to a target one as the problem of finding paths between
two nodes of a graph [9].

2.1 Managing transformations with incompatible metamodels
Considering the repository shown in Fig. 3 is not possible to satisfy the user that wants a
chain from Grafecet to PNML. because PetriNet1.0 and PetriNet2.0 are not compatible.
However, it is possible to add a new transformation (AdapterPetriNet1.0,PetriNet2.0)
that is able to adapt models conforming to PetriNet1.0 so to enable their manipulation
and transformation from PetriNet2.0 to PNML.

In order to discuss how to obtain the adapter transformation let us consider the dif-
ferences between the PetriNet1.0 and PetriNet2.0 metamodels. In particular, the new ver-
sion of the PetriNet metamodel has been obtained by operating the following changes
on PetriNet1.0:

δ1: pull up of the attribute name to the new abstract metaclass NamedElement
δ2: renaming of the metaclass Net as PetriNet

Difference
calculator

MM1 MM2

Delta Model

HOT

Adapter
MM1toMM2

m1 m2

Fig. 4. Generation of the adapter transfor-
mation

This discussion relates to the coupled-
evolution problem that has been intensively
investigate over the last years [10].

In such contexts, according to [11,12]
metamodel manipulations can be classified
by their corrupting or not-corrupting effects
on corresponding artifacts as non-breaking
changes (changes which do not break the con-
formance of models to the corresponding me-
tamodel), breaking and resolvable changes
(changes which break the conformance of
models even though they can be automati-
cally co-adapted) and breaking and unresolv-
able changes (changes which break the con-
formance of models which can not automati-
cally co-evolved and user intervention is required).

SATToSE 2014– Francesco Basciani 41

We have conceived the approach shown in Fig. 4. Starting from a difference model [13]
representing the differences between two incompatible metamodels, the approach is
able to generate adapter transformations. The approach relies the higher-order transfor-
mation we have developed to deal with the problem of metamodel/model coupled evo-
lution presented in [11] and subsequently refined to deal with other related co-evolution
problems (e.g., see [14,15,16,17]).

The proposed approach can be applied in case of non-breaking and breaking and
resolvable changes. In fact in such cases the adapter generation is completely automated
without requiring user intervention. By considered the running example, since δ1 is a
non-breaking change, and δ2 is breaking and resolvable, the approach in Fig. 4 can be
applied. It is important to remark that adapter transformations are generated when new
transformations are added in the repository or deleted from it. In particular, for each
transformation addition, the corresponding source and target metamodels are taken as
input by a similarity function [18,19] used to calculate a similarity value between such
metamodels and all the others already stored in the repository. The similarity values are
maintained in a table like the one shown in Table 1. If the similarity value between two
considered metamodels is higher than a threshold (in our initial tests we have used 0,80
as threshold value) then such metamodels are further analyzed.

Grafcet PetriNet1.0 PetriNet2.0 XML PNML

Grafcet 1 0,2 0,30 0,29 0,26

PetriNet1.0 - 1 0,89 0,20 0,28

PetriNet2.0 0,30 0,89 1 0,30 0,30

XML 0,29 0,2 0,3 1 -

PNML 0,26 - - 0,28 1

Table 1. Sample metamodel similarity values

Implementation The implemented system
consists of a J2EE application providing a
Web-based front-end that users can con-
veniently adopt to (i) upload the source
model, (ii) select the target metamodel
among the available ones, (iii) select one
of the proposed chains that are derived
in a transparent manner for the user as
discussed in the previous section (to help
users in the selection, each chain is char-
acterized by different attributes, like the
number of single transformations that will
be executed, the coverage with respect to
the source metamodel, how many times the chain has been already executed, and its
average execution time, these are just a few examples) , and (iv) remotely execute the
selected chain. At the end of the process, the user can download the generated model.

3 Conclusions

In this paper we presented a novel approach to support the chaining of model transfor-
mations. Starting from a user request consisting of a source model, and the specification
of a target metamodel, the system is able to calculate the possible chains satisfying the
user request according to the transformation available in a proposed transformation
repository. The main strengths of the approach proposed are related to the possibility
of chaining transformations that would be discarded if only the notion of metamodel
compatibility is considered.

42 Automated Chaining of Model Transformations with Incompatible Metamodels

References

1. Etien, A., Aranega, V., Blanc, X., Paige, R.F.: Chaining Model Transformations. In: Pro-
ceedings of the First Workshop on the Analysis of Model Transformations. AMT ’12, New
York, NY, USA, ACM (2012) 9–14

2. Etien, A., Muller, A., Legrand, T., Blanc, X.: Combining Independent Model Transforma-
tions. In: Proceedings of the 2010 ACM Symposium on Applied Computing. SAC ’10, New
York, NY, USA, ACM (2010) 2237–2243

3. Vanhooff, B., Baelen, S.V., Hovsepyan, A., Joosen, W.: Towards a Transformation Chain
Modeling Language (2006)

4. Etien, A., Muller, A., Legrand, T., Paige, R.F.: Localized model transformations for building
large-scale transformations. Software Systems Modeling (2013) 1–25

5. Wagelaar, D.: Composition Techniques for Rule-Based Model Transformation Languages. In
Vallecillo, A., Gray, J., Pierantonio, A., eds.: Theory and Practice of Model Transformations.
Volume 5063 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2008)
152–167

6. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Proceedings of the 2005 Inter-
national Conference on Satellite Events at the MoDELS. MoDELS’05, Berlin, Heidelberg,
Springer-Verlag (2006) 128–138

7. Aranega, V., Etien, A., Mosser, S.: Using Feature Model to Build Model Transformation
Chains. In: Proceedings of the 15th International Conference on Model Driven Engineering
Languages and Systems. MODELS’12, Berlin, Heidelberg, Springer-Verlag (2012) 562–578

8. Rivera, J.E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., Vallecillo, A.: Orchestrating
ATL Model Transformations. In: Proc. of MtATL 2009, Nantes, France (2009) 34–46

9. Rubin, F.: Enumerating all simple paths in a graph. IEEE Transactions on Circuits and
Systems 25 (1978) 641–642

10. Di Ruscio, D., Iovino, L., Pierantonio, A.: Coupled Evolution in Model-Driven Engineering.
IEEE Software 29 (2012) 78–84

11. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating Co-evolution in Model-
Driven Engineering. In: Proceedings of the 2008 12th International IEEE Enterprise Dis-
tributed Object Computing Conference. EDOC ’08, Washington, DC, USA, IEEE Computer
Society (2008) 222–231

12. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In Ernst, E., ed.: Pro-
ceedings of the 21st European Conference on Object-Oriented Programming (ECOOP’07).
Volume 4069 of Lecture Notes in Computer Science., Springer-Verlag (2007)

13. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to Dif-
ference Representation. Journal of Object Technology 6 (2007) 165–185

14. Di Ruscio, D., Iovino, L., Pierantonio, A.: Managing the Coupled Evolution of Metamod-
els and Textual Concrete Syntax Specifications. In: Software Engineering and Advanced
Applications (SEAA), 2013 39th EUROMICRO Conference on. (2013) 114–121

15. Di Ruscio, D., Lämmel, R., Pierantonio, A.: Automated Co-evolution of GMF Editor Mod-
els. In Malloy, B., Staab, S., Brand, M., eds.: Software Language Engineering. Volume 6563
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2011) 143–162

16. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary Togetherness: How to Manage Cou-
pled Evolution in Metamodeling Ecosystems. In: Proceedings of the 6th International Con-
ference on Graph Transformations. ICGT’12, Berlin, Heidelberg, Springer-Verlag (2012)
20–37

17. Di Ruscio, D., Iovino, L., Pierantonio, A.: A Methodological Approach for the Coupled Evo-
lution of Metamodels and ATL Transformations. In: Theory and Practice of Model Trans-
formations. (2013)

SATToSE 2014– Francesco Basciani 43

18. Voigt, K.: Structural Graph-based Metamodel Matching. PhD thesis (2011)
19. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching

algorithm and its application to schema matching. In: Proceedings. 18th International Con-
ference on Data Engineering, 2002. (2002) 117–128

44 Automated Chaining of Model Transformations with Incompatible Metamodels

Similarity management via history annotation
Extended Abstract (Work in Progress) SATToSE 2014

Thomas Schmorleiz and Ralf Lämmel

Software Languages Team
University of Koblenz-Landau, Germany

http://softlang.wikidot.com

Abstract. To meet requirements software is often developed as a set of
variants. In previous work [1], we have proposed an approach to manage
variants by using a virtual platform and cloning-related operators. In
this paper, we develop a tool for aggregating essential metadata for the
central propagate operator. We discuss the aggregation process, aspects
of the tool’s user interface, and the implementation of propagate.

1 Introduction

Software is often developed as a set of variants to adapt it to conflicting user
requirements, legal frameworks, or cultural constraints [1]. One approach to this
is cloning, that is, copying artifacts from an existing variant to create a new
variant. Cloning comes with both advantages and disadvantages [2]. While a clone
can be created with minimal effort and developers are able to work independently,
cloning often leads to redundancy, out-of-sync artifacts, and overall lack of control.
A systematic approach for managing variants is product line engineering (PLE) [3].
However, transitioning from a cloning approach to PLE comes with migration
issues and can lead to disruption within development teams. In previous work, we
have proposed an approach to transition from cloning to a virtual platform which
aims to achieve benefits of classical PLE while minimizing migration risks [1]. In
particular, we have presented a set of operators for clone management.

In this paper, we present a tool for generating essential metadata for the
central propagate operator. The operator pushes changes from an original
variation to a cloned one or vice versa and thereby diminishes unintentional
divergence. We use the 101companies project as a running example [4]. The
project aggregates implementations of a common feature model to demonstrate
various software languages, technologies, and concepts. It is common practice to
start the development of a new implementation by cloning an exiting one [1].

This paper makes the following contributions:

– A process for the extraction of similarities from a given Git repository.
– A web application for history annotation with cloning-related information.
– An approach to enable the propagate operator through annotations.

While other work on operators for clone management has been published in
literature [5, 6], this paper focuses on the aggregation of metadata including

user-provided annotations for the implementation of a specific operator. Surveys
on the state of the art of clone management point out necessary research for a
complete clone management system [7].

This paper is organized as follows. Section 2 describes our approach to similar-
ity management. We outline the overall process, explain relevant infrastructural
components, and discuss relevant metadata. We further mention important as-
pects of the user interface, and discuss the propagation of changes. Section 3
discusses the current state of development and future work.

2 Similarity management

In this section, we describe our approach for managing similarities in a software
repository.

2.1 Overall process

We have developed a web application which guides the overall process. Initially
the user selects a Git repository from the local file system. This triggers a series
of extraction tools:

1. Script extraction. Here we extract all operations performed throughout the
history of the repository. At this point, the operations are creation, renaming,
and deletion of files and committing changes.

2. Variation extraction. Next, we extract the names of variations from every
commit point. This step also detects variation renaming.

3. Fragment extraction. For each commit point, each variant, and each file,
we then extract a list of fragments, consecutive lines of code in a source file
(see below).

The web application then provides various views of the repository (see below) to
the user. The views aim to help the user to select a range of commits for which
to perform further analysis:

4. Similarity extraction. For every selected commit point and every newly
added fragment, we then extract all highly similar fragments at the commit
point. We use diff ratio as the measure of similarity while the user sets a
threshold for when two fragments should count as highly similar. As a result
we store pairs of highly similar fragments.

5. Conflict extraction. For each found pair of highly similar fragments, we
then detect if and when they diverged over time.

Finally, we show the similarities to the user in the web application. Similarities
are grouped by variations and commit points, and, additionally presented as
edges in the history of variations, pointing from a source fragment to a target
fragment. The user then annotates the edges by declaring them to be either
caused by cloning or by ignore. The second option is used by the web application

46 Similarity Management via History Annotation

to no longer bother the user with the similarity. The result of the annotation
is a graph where nodes are fragments in variations and edges are similarities
that resulted from cloning. This cloning graph is the input of the propagation
operator as described below.

2.2 Relevant infrastructure

While the web application triggers the various extractions, these in turn use other
components. We use a Git API on a local repository to inspect diffs, checkout
commits and read commit messages. For extracting fragments from a given
source file we use as set of language-specific fragment extractors and fragment
locators [8]. Fragment extractors take a source file as input and generate a set
of classifier/name pairs, where a classifier is typically the name of a syntactic
category of interest. For instance, for the programming language Haskell, a
classifier can be a function or a data type definition. A fragment locator then
returns a line range for a given source file and a classifier/name pair. We use
Python to compute the text-based diff ratio as a similarity measure of two
fragments.

2.3 Metadata

We differentiate between user-provided and computed metadata. The history
annotations are user-provided. Each annotation is associated with a similarity
edge between two fragments. The user annotates those edges that were caused
by cloning. Annotations also consist of an intent, that is, a short text stating the
reason why cloning and possibly changes were performed. In particular, differences
may be documented as being justified by a deliberate variation. The intents will
be used to decide whether change propagation can be performed automatically or
requires confirmation by the user. The annotations are aggregated and a cloning
graph is generated: a graph of fragments, each assigned to a variation and a file.
Fragments are connected by those similarity edges which have been caused by
cloning.

2.4 User interface

Due to the amount of data the user has to process it is necessary to follow good
principles of user experience (UX) design. Users should make informed decisions
with the help of different repository views. We currently provide an activity
history of the repository and a history of variations.

The actual annotation is an iterative process. First the web applications
displays the extracted similarities, group by variations and commit points, ranked
by diff ratio. The user can set a threshold for the diff ratio to reduce the displayed
similarities to a processable amount. The user then selects a similarity and is
provided with additional information, e.g., diffs and commit messages. After
annotating the edge the application shows the user detected divergences of the
fragments and he or she has the option to request synchronization by merging
changes. Then the next similarities are inspected.

SATToSE 2014– Thomas Schmorleiz, Ralf Lämmel 47

2.5 Change propagation

The actual propagate operator takes the repository and the cloning graph as
inputs. Changes can be pushed both in the direction of a cloning edge and from a
clone to an original. The propagation might involve automatic or manual merging
of changes made to the different variations. We also want to provide the operator
as an extension of the Git command line tools.

3 Concluding remarks

We have developed a first version of a web application for similarity analysis and
history annotation. The result of usage is a cloning graph which provides added
value because it enables the application of a propagate operator.

We have implemented all discussed extractors except for the conflict extractor.
We have a model for the cloning graph, but still have to develop a populator based
on the annotations. We have refined the user interface in several iterations, but
plan to add further views of the repository to help the user with the annotation
step.

The tool enables the implementation of the propagate operator. We will look
into options to extend the tool such that additional operators can be implemented.
This may include an operator to push newly added feature implementations across
variations or an operator for explicitly cloning an existing variation.

References

1. Michal Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Lämmel, Stefan Stanciulescu, Andrzej Wasowski, and Ina Schaefer.
Flexible product line engineering with a virtual platform. In ICSE Companion, pages
532–535, 2014.

2. Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. An exploratory study of cloning in industrial software
product lines. In CSMR, 2013.

3. Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

4. Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, and Andrei Varanovich. 101com-
panies: a community project on software technologies and software languages. In
TOOLS, 2012.

5. Julia Rubin and Marsha Chechik. A framework for managing cloned product variants.
In ICSE, 2013.

6. Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Managing cloned variants:
A framework and experience. In SPLC, 2013.

7. Chanchal K. Roy, Minhaz F. Zibran, and Rainer Koschke. The vision of software
clone management: Past, present, and future (keynote paper). In CSMR-WCRE,
pages 18–33, 2014.

8. Jean-Marie Favre, Ralf Lammel, Martin Leinberger, Thomas Schmorleiz, and Andrei
Varanovich. Linking documentation and source code in a software chrestomathy. In
WCRE, pages 335–344, 2012.

48 Similarity Management via History Annotation

Class model extraction from procedural code:
Confronting a few ideas from the 2000’s

against the reality of an industrial system

Marianne Huchard?, Ines Ammar, Ahmad Bedja Boana, Jessie Carbonnel,
Theo Chartier, Franz Fallavier, Julie Ly, Vu-Hao Alias Daniel Nguyen, Florian

Pinier, Ralf Saenen, and Sebastien Villon

LIRMM, Université Montpellier 2 et CNRS
{marianne.huchard}@lirmm.fr
http://www.lirmm.fr/~huchard

Abstract. In this extended abstract, we report an ongoing experience
conducted during a Master project on the migration of two industrial
software systems. The project was proposed by a major IT service com-
pany (not cited here for confidentiality reasons) which would like to inves-
tigate a migration processing chain, in order to renovate legacy software
composed of man-machine interfaces, databases and procedural source
code. The aim of the renovation is to migrate to the object-oriented
paradigm and generate new source code. Due to the limited time that
the Master students had in their curriculum for this project, we restricted
the study to the extraction of a class model. A processing chain was pro-
posed and a few heuristics, taken in the literature, have been tested,
with no really conclusive results. We report here the current status of
the project in order to get feedback and new ideas to build for the future.

Keywords: Software reengineering, software migration, class model ex-
traction, object identification

1 Context and problematics

Software renovation still remains a costly and time-consuming process for IT
service companies, that can be viewed as a waste of resource, compared to the
development of new software. Nevertheless, if timely and effective measures are
not taken to regularly update the design, the source code, the documentation
and all related artifacts, it may arrive the day where the software can no longer
be understood by human, or compiled by the new compilers, or even ran on the
new servers. The challenge is to maintain and migrate with a low cost the legacy
software, before real problems arise. In this extended abstract, we report an
? The authors would like to thank the IT service companies that brought the renova-
tion project and followed the work in progress and the master students (Luc Debène,
Chaymae Regragui and Cedric Cambon) that made a tutorial for the use of Famix
in the context of this project.

experience, in which we designed a processing chain for renovating a particular
legacy software.

The two studied legacy software systems are part of a larger software suite,
but can be analyzed independently. They are composed of code describing man/ma-
chine interface (HTML, VBScript/ASP, Javascript), Visual Basic Code (VB6),
SQL procedures (SQL Server 2000) and two databases. The source code (VB
and SQL) is composed of 909 functions, 30437 LOC for the largest software and
346 functions, 26042 LOC for the smallest software. One database contains 45
tables, while the other contains 103 tables.

Due to the limited time that the Master students had in their curriculum
for this project, we restricted the study to the extraction of a class model. The
students were divided in three groups, but they collaborated throughout the
project. In the next sections, we develop the proposed approach and its current
results (Section 2), then we conclude in Section 3.

2 The renovation approach

The global process The current study is concerned with specific programming
languages, but we aim at proposing a generic processing chain which could be
applied to other procedural and database programming languages (input) and
other object-oriented language (output) of the same company. We decided to
follow a classical processing chain such as that which is presented in Fig. 1,
organized around an intermediate model.

Fig. 1. The generic process

Fig. 2 shows the current instantiated process that we follow. We describe in
next paragraphs the tested tools and methods of each step.

Intermediate model The choice of the intermediate model was partly guided by
simplicity reasons (avoiding complex UMLmeta-model as proposed in UML2tools
for example) and by the needs of the envisaged heuristics (study data access and
function calls to determine connected sets of data and functions). In order to
represent the source artifacts and the class model, we chose the FAMIX meta-
model and its MSE serialization format [5]. For the representation of the output
class model, this was quite natural, because of its language independency and
its ability to describe the static structure of object-oriented software: main used

50 Class Model Extraction From Procedural Code

Fig. 2. The current process

concepts are meta-classse Class, Method, Attribute, Access and Invocation. For
the representation of our input model, we partly used FAMIX in an unusual
manner. Procedural code was easily represented using Function and Invocation.
We met a problem for the representation of database elements. FAMIX being ex-
tensible, we thought that it would be the right approach to add meta-classes for
representing data table and columns. Due to the delay, we provisionally abandon
this track, but it remains a future work. Then, we used meta-classes Class and
Attribute to respectively represent tables and columns, even if we don’t con-
sider the solution satisfactory. In this step, we found a difficulty in establishing
a common strategy for the three student groups for the use of FAMIX, because
initially, the groups were using different attributes of the meta-classes for rep-
resenting the same information (e.g. using signature in Invocation meta-class,
versus candidates).

Source code analysis Man-machine interface source code was partially manually
analyzed, but in a first approach, we decided to abandon the track because of the
little domain knowledge that this code seemed (at first sight) expose. This will be
study into more details in future work. At the beginning, we would like to analyze
VB code using Microsoft Visual studio, but it reveals to be impossible because
of the old version of VB code. This again shows the importance to regularly
update software source code. An evaluation version of VBdepend 1 was tested
and allowed us to retrieve functions, invocations and parameters. As we were
interested in finding the VB functions and the SQL functions that manipulated
the database they called, some specific code has been developed because in the
source code, this is done via a same function that takes as parameters the called
SQL function and its parameters. SQL code has been analyzed with GSP 2 to
extract which SQL procedure has which kind of access to which tables (and
which columns of the tables). We met a few problems in using the two tools, but
more than 99% of the VB functions and more than 91% of the SQL procedures
were correctly analyzed. MSE entities coming from SQL analysis and from VB
analysis are merged to give a unique MSE file for the remainder of the project.

Class model heuristics extraction Each student group had three or four papers
about "object identification" (the term used in 2000’s for talking about class
1 http://www.vbdepend.com
2 http://www.sqlparser.com

SATToSE 2014– Marianne Huchard, Ines Ammar, Ahmad Bedja Boana, Jessie
Carbonnel, Theo Chartier, Franz Fallavier, Julie Ly, Vu-Hao (Daniel) Nguyen,
Florian Pinier, Ralf Saenen, Sebastien Villon 51

model extraction) and they had to choose one for implementation [9, 2–4, 7, 1,
6, 8, 10]. The three methods of [4, 6, 9] have been tried. The approach of [4] is
an ad hoc method based on a hierarchical clustering technique that we had to
entirely implement. The clusters are composed of columns "similarly accessed"
by functions. In [6], they compare several meta-heuristics and we chose among
them the simulated annealing method. The framework AIMA 3 has been used
for the tests. It requires to implement a few Java interfaces by accessing the
MSE files and computing a neighbor solution as well as cohesion and coupling
metrics (on which an objective function is based) on the current solution (a
set of candidate classes composed of data and functions). The approach of [9]
uses Formal Concept Analysis to form concepts composed of functions and their
accessed columns. After concept lattice building, an ad hoc algorithm merges
some concepts and assigns the functions to the classes.

VerveineJ 4 is used in all implementations for finding the entities that are
taken as input of heuristics and MSE files are generated that contain the output
class models.

Current results The hierarchical clustering based implementation allows us to
find different size solutions, depending the chosen level for stopping the cluster-
ing. It produces classes which mainly correspond to connected groups of tables
of the initial databases, thus with an explainable logics. Its current issue con-
cerns the methods assignment (only functions that access to a single class are
assigned to that class), thus a complementary approach has to be proposed. The
metrics to be used in simulated annealing approach and their respective weights
were not sufficiently described, and for the moment we are not able to obtain
the same results as those obtained by the author on the example given in the
paper. The FCA approach produces many classes (compared to the database ta-
ble number). Some obtained classes have a coherence for people of the company,
but some seem to be incidental groups of attributes and methods, technically
explained by accesses and invocations, but with no clear meaning. Besides, even
if the concept lattice guarantees maximal factorization with no redundancies,
the applied post-treatments generate a huge attribute and method duplication.

3 Conclusion

In this extended abstract, we reported an ongoing work that aims at extracting
a class model from procedural code, relying on work mostly done in the 2000s.
Some difficulties were met to apply the methods: some are dedicated to spe-
cific contexts (as COBOL code, or C code) and they are not so generic; some
parameters of the methods are not very precisely described, leaving space for in-
terpretation. As we also think that structural aspects, including data access and
function invocation are not sufficient to determine meaningful classes, we plan
to investigate software identifier analysis. Besides, we expect that man-machine
3 http://code.google.com/p/aima-java/
4 http://www.moosetechnology.org/tools/verveinej

52 Class Model Extraction From Procedural Code

interface code or execution trace could be an help to extract connected function-
alities. Last, as these techniques have to be understood as a technical assistance
for expert engineers, we would like to study how the user should intervene in the
process.

References

1. Bhatti, M.U., Ducasse, S., Huchard, M.: Reconsidering classes in proce-
dural object-oriented code. In: International Conference on Reverse En-
gineering (WCRE) (2008), http://rmod.lille.inria.fr/archives/papers/
Bhat08b-WCRE2008-ObjectIdentification.pdf

2. Canfora, G., Cimitile, A., Lucia, A.D., Lucca, G.A.D.: A case study of applying
an eclectic approach to identify objects in code. In: IWPC. pp. 136–143. IEEE
Computer Society (1999)

3. Cimitile, A., Lucia, A.D., Lucca, G.A.D., Fasolino, A.R.: Identifying objects in
legacy systems using design metrics. Journal of Systems and Software 44(3), 199–
211 (1999)

4. van Deursen, A., Kuipers, T.: Identifying objects using cluster and concept anal-
ysis. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) ICSE. pp. 246–255. ACM
(1999)

5. Ducasse, S., Anquetil, N., Bhatti, M.U., Hora, A.C., Laval, J., Girba, T.:
Mse and famix 3.0 : an interexchange format and source code model family.
Tech. Rep. Cutter-Deliverable 22, ANR 2010 BLAN 0219 02, RMod INRIA
Lille-Nord Europe (November 2011), http://rmod.lille.inria.fr/archives/
reports/Duca11c-Cutter-deliverable22-MSE-FAMIX30.pdf

6. Glavas, G., Fertalj, K.: Solving the class responsibility assignment problem using
metaheuristic approach. CIT 19(4), 275–283 (2011)

7. Lucca, G.A.D., Fasolino, A.R., Guerra, P., Petruzzelli, S.: Migrating legacy systems
towards object-oriented platforms. In: ICSM. pp. 122–129. IEEE Computer Society
(1997)

8. Maletic, J.I., Marcus, A.: Supporting program comprehension using semantic and
structural information. In: Müller, H.A., Harrold, M.J., Schäfer, W. (eds.) ICSE.
pp. 103–112. IEEE Computer Society (2001)

9. Sahraoui, H.A., Lounis, H., Melo, W.L., Mili, H.: A concept formation based ap-
proach to object identification in procedural code. Autom. Softw. Eng. 6(4), 387–
410 (1999)

10. Zou, Y., Kontogiannis, K.: Incremental transformation of procedural systems to
object oriented platforms. In: COMPSAC. pp. 290–295. IEEE Computer Society
(2003)

SATToSE 2014– Marianne Huchard, Ines Ammar, Ahmad Bedja Boana, Jessie
Carbonnel, Theo Chartier, Franz Fallavier, Julie Ly, Vu-Hao (Daniel) Nguyen,
Florian Pinier, Ralf Saenen, Sebastien Villon 53

Towards cheap, accurate polymorphism
detection

Nevena Milojković

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

Abstract. Polymorphism, along with inheritance, is one of the most
important features in object-oriented languages, but it is also one of
the biggest obstacles to source code comprehension. Depending on the
run-time type of the receiver of a message, any one of a number of pos-
sible methods may be invoked. Several algorithms for creating accurate
call-graphs using static analysis already exist, however, they consume
significant time and memory resources. We propose an approach that
will combine static and dynamic analysis and yield the best possible
precision with a minimal trade-off between used resources and accuracy.

1 Introduction

Developers often make assumptions about method invocations based on clues
from source code. They need to understand their source code better. Knowing the
call-graph structure at compile time would be of great benefit to the developers,
and it would enhance the tools relying on static information.

While writing code, developers are often interested in the run-time behaviour
of the system under development, especially in the run-time types of variables [6].
Whereas current IDEs mainly focus on the source code, and not on the dynamic
behaviour, developers could benefit from both of them. Gathering the informa-
tion from a running application is straightforward, presuming that the applica-
tion can be instrumented and executed. However, in some cases it is not possible,
or it could cause some additional costs.

Even though static and dynamic techniques exist to extract run-time infor-
mation, both have shortcomings in performance, and in recall and precision. Our
idea is to explore which static algorithms are affordable and give good, usable
results, possibly combined with the information dynamically collected.

2 Description of the approach

In order to construct the most precise call-graphs possible in object-oriented
systems, many algorithms have been developed over the years [3,1,7]. Shivers’ k-
CFA analysis [5] is a widely known family of control-flow analyses, accepted also
in the object-oriented world, even though it was created primarily for functional
languages. It has been established as being one of the most reliable analyses,

although one of the most expensive. 1- and 2-CFA are considered to be “heavy”
analyses in OO languages, but feasible [4,2]. Other analyses, such as CHA and
RTA analyses scale well, but, in most cases, they are not accurate enough. In
general, the precision of one such algorithm is correlated with the number of
nodes in the call-graph, i.e. the number of reachable methods, which represents
a conservative approximation of a program behavior during run-time.

We intend to explore the trade-off between static and dynamic techniques
to build accurate call graphs. Whereas static techniques generally produce false
positives (theoretically possible but actually infeasible execution paths), dynamic
techniques may produce false negatives (feasible paths that simply aren’t cov-
ered). We wish to explore how static and dynamic techniques can be combined
to yield higher precision at a reasonable cost. To obtain dynamic information
we will execute tests where the method and the source code coverage are large
enough to give us consistent results. In cases where it is possible to predict all
potential inputs, the preferred way would be to run the application, under the
assumption that it will finish in reasonable time.

We propose a tool that will return more precise information whenever it is
possible to do so. For example, static analysis in some cases gives too ambiguous
results, i.e. a really large set of methods possibly used at a certain call site.
In such cases, our program-understanding tool could offer dynamically collected
information which provides a more focused set, often more relevant for develop-
ers. Another approach would be to use an inexpensive static analysis in order to
determine the call sites where polymorphism is possible, and then analyze only
these call sites dynamically, thus reducing cost.

References

1. David F. Bacon and Peter F. Sweeney. Fast static analysis of c++ virtual function
calls. SIGPLAN Not., 31(10):324–341, October 1996.

2. Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. SIGPLAN Not., 44(10):243–262, October 2009.

3. Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In W. Olthoff, editor, Proceedings
ECOOP ’95, volume 952 of LNCS, pages 77–101, Aarhus, Denmark, August 1995.
Springer-Verlag.

4. David Van Horn Matthew Might, Yannis Smaragdakis. Resolving and exploiting
the k-CFA paradox. In PLDI, pages 305–315, 2010.

5. Olin Grigsby Shivers. Control-flow Analysis of Higher-order Languages of Taming
Lambda. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1991. UMI
Order No. GAX91-26964.

6. Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions programmers ask
during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, SIGSOFT ’06/FSE-14,
pages 23–34, New York, NY, USA, 2006. ACM.

7. Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction al-
gorithms. In Proceedings of the 15th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’00, pages 281–293,
New York, NY, USA, 2000. ACM.

SATToSE 2014– Nevena Milojković 55

Detecting Refactorable Clones
Using PDG and Program Slicing

Extended Abstract

Ammar Hamid?

Universiteit van Amsterdam

Abstract.

Code duplication in a program can make understanding and maintenance more difficult.
This problem can be reduced by detecting duplicated code, refactoring it into a separate new
procedure, and replacing all the occurrences by calls to the new procedure. This paper is an
evaluation and extension of the paper of Komondoor and Horwitz [3], which describes the
approach and implementation of a tool, that based on Program Dependence Graph (PDG) [4]
and Program Slicing [7]. The tool can find non-contiguous (clones whose components do not
occur as contiguous text in the program), reordered, intertwined, refactorable clones, and display
them. PDG and Program Slicing provide an abstraction that ignores arbitrary sequencing choices
made by programmer, and instead captures the most important dependences (data and control
flow) among program components. In contrast to some approaches that used the program text,
control-flow graph, and AST, all of which are more closely tied to the lexical structure which is
sometimes producing irrelevant result.

1 Approach

To detect clones in a program, we represent each procedure using its PDG. In PDG, vertex
represents program statement or predicate, and edge represents data or control dependences.
The algorithm performs four steps (described in the following subsections):

Step 1: Find relevant procedures
Step 2: Find pair of vertices with equivalent syntactic structure
Step 3: Find clones
Step 4: Group clones

1.1 Find relevant procedures

We are only interested in finding clones for procedures that are reachable from the main program
execution. The reason for this, is that we can safely remove unreachable procedures from our
program and therefore there is no need to detect clones for it. We do this by getting a system
initialization vertex and do a forward-slice with data and control flow. This will return all PDGs
(including user defined and system PDGs) that are reachable from the main program execution.
From that result, we further filter those PDGs to find only the user defined ones, ignoring system
libraries.
? email: ammarhamid84@gmail.com

1.2 Find pair of vertices with equivalent syntactic structure

We scan all PDGs from the previous step to find vertices that has type expression (e.g. int a
= b + 1). From those expression vertices, we try to match their syntactic structure with each
other. To find two expressions with equivalent syntactic structures, we make use of Abstract
Syntax Tree (AST). This way, we ignore variable names, literal values, and focus only on the
structure, e.g. int a = b + 1 is equivalent with int k = l + 1, where both expression has the
same type, which is int).

1.3 Find clones

From a pair of equivalent structure expressions, we do a backslice call to find their predecessors
and compare them with each other. If the AST structures of their predecessors are the same then
we store it in the collection of clones found. Because of this step, we can find non-contiguous,
reordered, intertwined and refactorable clones. Refactorable clones in this case mean that the
found clones are meaningful and it should be possible to move it into a new procedure without
changing their semantic.

1.4 Group clones

This is the step where we make sense of the found clones before displaying them. As an example,
using CodeSurfer [2], the vertex for a while-loop doesn’t really show that it is a while loop
but rather showing its predicate, e.g. while(i<10) will show as a control-point vertex i<10.
Therefore, it is important that the found clones is mapped back to the actual program text
representation and group them together before displaying them. Moreover, it is important that
the programmer can understand and take action on the reported clones.

2 Evaluation

We are using CodeSurfer (version 2.3) to create PDG representation for the C-program to be
analyzed. In CodeSurfer, we use the API, written in Scheme [1], to access those PDGs and perform
all operations in the previous sections programmatically. The progress so far, with running this
approach on a sample program, shows that it is pretty accurate and satisfying result. See example
below:

SATToSE 2014– Ammar Hamid 57

Procedure 1 Procedure 2
int foo(void) { int bar(void) {

* int i = 1; * int a = 1;

bool z = true; bool w = false;

int t = 10; int t = 10;

* int j = i + 1; * int s;

* int n; * int b = a + 1;

* for (n=0; n<10; n++) { * for (s=0; s<10; s++) {

* j = j + 5; * b = b + 5;

} }

* int k = i + j - 1; * int c = a + b - 1;

return k; return c;

} }

The clones found are indicated with *. In this example, it clearly shows that not everything
that has the same structure or the same syntax are reported as clones (e.g. int t = 10;). The
reason that some vertices with equivalent syntactic structures are not included is that because
they are not used anywhere and therefore can be left out safely. Only the clones which are
meaningful and can be refactored into a new procedure are reported.

3 Related studies

Komondoor and Horwitz [3] proposed the use of PDG for clone detection. They were able to find
isomorphic subgraphs of the PDG by implementing a program slicing technique that is using a
combination of backward slicing and forward slicing. Their initial step is to find set of pair with
syntactically equivalent node pairs and performed backward slicing from each pair with a single
forward slicing for matching predicates nodes.

Cider [6] can detect an interprocedural clone, using Plan Calculus [5]. This algorithm can
detect code clones regardless of various refactorings that may have been applied to some of the
copies but not to others.

58 Detecting Refactorable Clones Using PDG and Program Slicing

References

[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, I. Adams, N. I., D. P. Friedman,
E. Kohlbecker, J. Steele, G. L., D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman,
G. Brooks, C. Hanson, K. M. Pitman, and M. Wand. Revised5 Report on the Algorith-
mic Language Scheme. Higher-Order and Symbolic Computation, 11(1):7–105, 1998.

[2] GrammaTech. CodeSurfer. http://www.grammatech.com/research/technologies/

codesurfer.
[3] R. Komondoor and S. Horwitz. Using Slicing to Identify Duplication in Source Code. In

Proceedings of the 8th International Symposium on Static Analysis, SAS ’01, pages 40–56.
Springer-Verlag, 2001.

[4] K. J. Ottenstein and L. M. Ottenstein. The Program Dependence Graph in a Software
Development Environment. In Proceedings of the First ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, SDE 1, pages
177–184. ACM, 1984.

[5] C. Rich and R. C. Waters. The programmer’s apprentice. ACM Press frontier series. ACM,
1990.

[6] M. Shomrat and Y. A. Feldman. Detecting Refactored Clones. In G. Castagna, editor,
Proceedings of the 27th European Conference on Object-Oriented Programming (ECOOP),
volume 7920 of Lecture Notes in Computer Science, pages 502–526. Springer, 2013.

[7] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352–357,
1984.

SATToSE 2014– Ammar Hamid 59

Analysis of developer expertise of APIs
Extended Abstract (Work in Progress) SATToSE 2014

Hakan Aksu and Ralf Lämmel

Software Languages Team
University of Koblenz-Landau, Germany

http://softlang.wikidot.com

Abstract. We analyze the version history of software projects to deter-
mine API and domain expertise of developers. In particular, we analyze
the commits to a repository in terms of affected API usage. On these
grounds, we can associate APIs (or parts thereof) with developers and
we can thus assess API experience of developers. In transitive closure,
we can also assess domain experience because of the way how (parts of)
APIs are associated with programming domains.

1 Preamble

This extended abstract describes the topic of the MSc thesis by the first author.
Work on this thesis is currently at the phase of methodology planning and related
work research.

2 Motivation

One task of executives and project managers in IT companies or departments is to
hire suitable developers and to assign them to suitable problems. Thus, developer
skills must be determined. To this end, interviews, questionnaires, assignments,
and publicly available information (e.g., on topcoder or stackoverflow) may be
used. All existing methods are known to be “problematic”. In this extended
abstract, we propose an additional technique; it directly leverages previous work
experience of developers in a systematic manner. That is, we analyze existing
evidence for developer expertise based on the version history of existing projects.
More specifically, we analyze the commits to a repository in terms of affected
API usage. On these grounds, we can associate APIs (or parts thereof) with
developers and we can thus assess API experience of developers. In transitive
closure, we can also assess domain experience.

3 Milestones

– We review related work and best practices of MSR (mining software reposi-
tories), see, e.g., [2], to agree on methods for processing version history and
discovering traceability links between commits, code, and developers.

– We leverage our prior work on API usage analysis [7, 3] and more related
work on the subject [10, 9] to translate code changes into API usage data.
This may also concern parts (facets) of APIs and programming domains.

– We leverage best practices on corpus usage and engineering in MSR, see, e.g.,
[8, 7, 5], to select suitable open-source projects as the corpus to be used in
our research. A challenge is here that the analysis cannot generally assume
all versions to be buildable (resolvable).

– We devise appropriate summarization and visualization techniques to be
applied on the results of our analysis so that we derive an understandable
and informative developer profile regarding API and domain expertise. A
challenge is here that we need to map changes to skills.

4 Related work

This effort relates broadly to these research areas:

– Analysis of API usage; see, e.g., [10, 3, 7, 9]
– Analysis of changes along evolution; see, e.g., [6, 1].
– Analysis of developer activity; see below.

Our project combines all three areas with some emphasis on the last one, as
far as the need for new techniques is concerned. That is, we aim at analyzing
and interpreting developer activity in terms of changes along evolution based on
indicators of API usage.

In [11], interactions of distributed open-source software developers are ana-
lyzed. Data mining techniques are utilized to derive developer roles. The under-
lying modeling and data mining techniques may be also be applicable, to some
extent, to our problem in that the concepts of developer roles and (API-related)
developer skills are not completely different. The concrete open-source projects
of this work (ORAC-DR and Mediawiki) may also provide a starting point for
our corpus.

In [4], statistical author-topic models are applied to a subset of the Eclipse
3.0 source code. The authors state that this technique provides an intuitive
and automated framework with which to mine developer contributions and
competencies from a given code base. The resulting information can serve as
summary of developer activities and a basis for developer similarity analysis.
The technique may be also be applicable, to some extent, to our problem, if we
manage to identify API “topics” on the grounds of API definitions (types and
method signatures) and extra metadata about domains and API facets [7].

SATToSE 2014– Hakan Aksu, Ralf Lämmel 61

References

1. Canfora, G., Cerulo, L., Penta, M.D.: Identifying Changed Source Code Lines from
Version Repositories. In: MSR. p. 14. IEEE (2007)

2. Chaturvedi, K.K., Singh, V.B., Singh, P.: Tools in Mining Software Repositories.
In: ICCSA (6). pp. 89–98. IEEE (2013)

3. Lammel, R., Linke, R., Pek, E., Varanovich, A.: A Framework Profile of .NET. In:
WCRE. pp. 141–150. IEEE (2011)

4. Linstead, E., Rigor, P., Bajracharya, S.K., Lopes, C.V., Baldi, P.: Mining Eclipse
Developer Contributions via Author-Topic Models. In: MSR. p. 30. IEEE (2007)

5. Pek, E.: Corpus-based Empirical Research in Software Engineering. Ph.D. thesis,
University of Koblenz-Landau, Department of Computer Science (2014), available
online at http://softlang.uni-koblenz.de/PekThesis.pdf

6. Robbes, R.: Mining a Change-Based Software Repository. In: MSR. p. 15. IEEE
(2007)

7. Roover, C.D., Lämmel, R., Pek, E.: Multi-dimensional exploration of API usage.
In: ICPC. pp. 152–161. IEEE (2013)

8. Tempero, E.D., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: The Qualitas Corpus: A Curated Collection of Java Code for Empirical
Studies. In: APSEC. pp. 336–345. IEEE (2010)

9. Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining succinct and
high-coverage API usage patterns from source code. In: MSR. pp. 319–328. IEEE
(2013)

10. Xie, T., Pei, J.: MAPO: mining API usages from open source repositories. In: MSR.
pp. 54–57. IEEE (2006)

11. Yu, L., Ramaswamy, S.: Mining CVS Repositories to Understand Open-Source
Project Developer Roles. In: MSR. p. 8. IEEE (2007)

62 Analysis of Developer Expertise of APIs

The SoLaSoTe ontology for
software languages and technologies

Extended Abstract (Work in Progress) SATToSE 2014

Ralf Lämmel, Martin Leinberger, and Andrei Varanovich

Software Languages Team
University of Koblenz-Landau, Germany

http://softlang.wikidot.com

1 Introduction

Ontologies are increasingly used in software engineering for analysis, design,
implementation, documentation, testing, and maintenance of software systems [1].
In this extended abstract, we sketch the SoLaSoTe ontology for software languages
and software technologies, as they are used in software engineering. SoLaSoTe
serves for knowledge representation and management and integration in the
broad context of software languages and software technologies—as opposed to
more specific categories of ontologies (such as domain ontologies, task ontologies,
application ontologies, or (very) high-level ontologies [2]).

More specifically, the SoLaSoTe ontology represents knowledge as follows:

– Classification of languages and technologies as well as related concepts.
– Dependencies between languages and technologies.
– Concept-based characterization of languages and technologies.
– Links to existing knowledge resources for languages and technologies.
– Traceability for language and technology usage in shared software systems.

As a result, the SoLaSoTe ontology provides benefits as follows:

– Unambiguous terminology in the “domain” of languages and technologies.
– Identification of commonalities and differences of entities in ditto domain.
– Systematic demonstration of languages and technologies.
– Integration of otherwise scattered knowledge resources.

The continuous development of SoLaSoTe is linked to the 101companies project [3]
(or “101” for short) in that we leverage 101’s software chrestomathy [4] with
relevant components as follows:

– A wiki used to document all involved entities.
– Semantic web-like properties in said wiki to manage structured knowledge.
– A software repository to hold associated, shared software systems.
– A feature model to standardize said software systems.

In the rest of the extended abstract, we sketch the schema of SoLaSoTe, the
process for the validation of the ontology (as represented on a semantic wiki) as
well as some indications for using the ontology in queries (reasoning).

Top-level classification of entities

– Entity Everything in the scope of the ontology
• Language Software languages such as Java or XML
• Technology Software technologies such as JUnit or Eclipse
• Concept Software concepts such as Visitor or Unit testing
• Feature Features of 101’s imaginary system
• Contribution Implementations of 101’s imaginary system
• Contributor Contributors of code and documentation
• Theme Containers of related contributions
• Vocabulary Containers of domain-specific terms
• Resource External resources such as standards and specifications

Semantic properties grouped by subject entity
Entity
instanceOf Entity An instance/type relationship
isA Entity A specialization relationship
partOf Entity A whole-part relationship
dependsOn Entity Dependence relationship
mentions Entity Nonspecific reference in documentation
sameAs URL Equivalence relative to external resource
similarTo URL Similarity relative to external resource
linksTo URL Nonspecific reference to external resource
documentedBy Contributor Authorship of documentation
memberOf Vocabulary Membership in vocabulary of terms

Contribution
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Feature Feature implementation
developedBy Contributor Developer of contribution
reviewedBy Contributor Reviewer of contribution
memberOf Theme Membership in theme of contributions
basedOn Contribution Indication of reuse
varies Contribution Indication of variation
moreComplexThan Contribution Indication of complexity

Resource
describes Language Language definitions, et al.
describes Technology API specifications, et al.
describes Concept Textbook, white papers, et al.

Technology
uses Language Language usage
uses Technology Technology usage
uses Concept Concept usage
implements Language Parsers, compilers, interpreters, et al.
implements Resource Compliance with a standard, et al.
supports Concept Support of a protocol, et al.

Fig. 1. The schema of SoLaSoTe (with some omissions)

64 The SoLaSoTe Ontology for Software Languages and Technologies

2 SoLaSoTe’s schema

The essence of the schema is shown in Fig. 1. The classification objective of
SoLaSoTe relies on a layer of top-level classes that are simply rooted by Entity ;
see the upper part of the figure. Specialization and instantiation relationships
can be applied for the classification of languages, technologies, and concepts,
while additional relationships capture composition and dependence; see the
properties instanceOf, isA, partOf, and dependsOn for entities. There is a family
of properties concerned with the association of the ontology’s entities with
external resources; see sameAs, similarTo, and linksTo. Yet other properties
concern authorship of documentation for entities and membership of entities
(terms) in (sub-) vocabularies.

SoLaSoTe relies on the shared software systems of 101; they are called contri-
butions ; they are contributed (developed, reviewed, documented) by contributors
(persons). The schema identifies a number of properties that are clearly designed
to semantically connect contributions and other kinds of entities. In particular,
a contribution links to languages, technologies, concepts that it uses. Also, a
contribution links to features that it implements. To this end, a well-defined
feature model helps with the standardization of the shared software systems. For
what it matters, contributions are also interrelated to indicate reuse, variation of
technology or design choices, and differences in complexity.

Fig. 2. Semantic properties of a contribution in 101’s chrestomathy

3 SoLaSoTe’s validation process

The ontology (in terms of all the subtypes of Entity and all the actual properties)
is expressed on a semantic wiki. Regular links give rise to “mentions” properties of
Fig. 1. All the other properties are explicitly expressed within the documentation
in designated metadata section per page. For instance, Fig. 2 shows the properties
for a Java-based contribution, which exercises database technologies as well as
SQL while implementing a number of 101’s features.

The (simplified) process of validation commences as follows:

– Extract RDF triples from the semantic wiki:

SATToSE 2014– Ralf Lämmel, Martin Leinberger, Andrei Varanovich 65

• Entity becomes a root class.
• Language, Technology, etc. become subclasses of Entity.
• The isA properties give rise to rdfs:subClassOf properties.
• The instanceOf properties give rise to rdf:type properties.
• All other semantic properties are adopted, as is.

– Analyze the integrity of the RDF triples:
• All resources have an rdf:type property.
• The subjects and objects of properties agree with the schema.
• No properties other than those of the schema are used.
• An instance is never specialized (as in OWL DL).

These integrity constraints are expressed as SPARQL queries that are obtained
by a simple interpretation of the schema.1 We skip over some details here such
as dealing with cardinalities for providing warnings regarding symptoms of
incompleteness in the ontology.

4 Querying SoLaSoTe

The ontology is not only useful for representing knowledge, but we can also query
it to infer knowledge not represented explicitly. Here are a few query scenarios:

Paradigm-specific concepts Given a small set of programming paradigms,
find the concepts that appear to be (more or less) uniquely associated with
each paradigm—by means of collecting concepts being mentioned in the
documentation of contributions, which are using programming languages of
the different paradigms.

Simple baseline implementation Find the contribution that uses a given
language and exercises a given concept such that there is no other contribution
with less features, languages, technologies, and concepts involved.

Knowledge holder shortage Identify languages and technologies that are
used infrequently by contributions without a proportional frequency of contrib-
utors who appear to be knowledgeable for these languages and technologies.

References

1. Emdad Ahmed. Use of ontologies in software engineering. In SEDE, pages 145–150.
ISCA, 2008.

2. José R. Hilera Francisco Ruiz. Ontologies for software engineering and software
technology. In Using Ontologies in Software Engineering and Technology, pages
49–102. Springer, 2006.

3. Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, and Andrei Varanovich. 101com-
panies: A community project on software technologies and software languages. In
TOOLS (50), volume 7304 of LNCS, pages 58–74. Springer, 2012.

4. Ralf Lämmel. Software chrestomathies. Science of Computer Programming, 2013.
In print.

1 The approach is inspired by Stardog’s ICV: http://docs.stardog.com/icv/

66 The SoLaSoTe Ontology for Software Languages and Technologies

A three-level formal model for software
architecture evolution

Abderrahman Mokni+, Marianne Huchard*, Christelle Urtado+, Sylvain
Vauttier+, and Huaxi (Yulin) Zhang‡

+LGI2P, Ecole Nationale Supérieure des Mı̂nes Alès, Nı̂mes, France
*LIRMM, CNRS and Université de Montpellier 2, Montpellier, France

‡ INRIA / ENS Lyon, France

{Abderrahman.Mokni, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr,
huchard@lirmm.fr, yulinz88@gmail.com

1 Introduction

Software evolution has gained a lot of interest during the last years [1]. Indeed,
as software ages, it needs to evolve and be maintained to fit new user require-
ments. This avoids to build a new software from scratch and hence save time
and money. Handling evolution in large component-based software systems is
complex and evolution may lead to architecture inconsistencies and incoherence
between design and implementation. Many ADLs were proposed to support ar-
chitecture change. Examples include C2SADL [2], Wright [3] and π-ADL [4].
Although, most ADLs integrate architecture modification languages, handling
and controlling architecture evolution in the overall software lifecycle is still an
important issue. In our work, we attempt to provide a reliable solution to the
architecture-centric evolution that preserves consistency and coherence between
architecture levels. We propose a formal model for our three-level ADL Dedal [5]
that provides rigorous typing rules and evolution rules using the B specification
language [6]. The remainder of this paper is organized as follows: Section 2 gives
an overview of Dedal. Section 3 summarizes our contributions before Section 4
concludes and discusses future work.

2 Overview of Dedal the three-level ADL

Dedal is a novel ADL that covers the whole life-cycle of a component-based
software. It proposes a three-step approach for specifying, implementing and
deploying software architectures in a reuse-based process.
The abstract architecture specification is the first level of architecture soft-
ware descriptions. It represents the architecture as designed by the architect
and after analyzing the requirements of the future software. In Dedal, the ar-
chitecture specification is composed of component roles and their connections.
Component roles are abstract and partial component type specifications. They
are identified by the architect in order to search for and select corresponding
concrete components in the next step.

The concrete architecture configuration is an implementation view of the
software architecture. It results from the selection of existing component classes
in component repositories. Thus, an architecture configuration lists the concrete
component classes that compose a specific version of the software system. In
Dedal, component classes can be either primitive or composite. Primitive com-
ponent classes encapsulate executable code. Composite component classes en-
capsulate an inner architecture configuration (i.e. a set of connected component
classes which may, in turn, be primitive or composite). A composite component
class exposes a set of interfaces corresponding to unconnected interfaces of its
inner components.
The instantiated architecture assembly describes software at runtime and
gathers information about its internal state. The architecture assembly results
from the instantiation of an architecture configuration. It lists the instances of
the component and connector classes that compose the deployed architecture at
runtime and their assembly constraints (such as maximum numbers of allowed
instances).

3 Summary of ongoing research

3.1 Dedal to B formalization

Dedal is a relatively rich ADL since it proposes three levels of architecture de-
scriptions and supports component modeling and reuse. However, the present
usage of Dedal is limited since there is no formal type theory for Dedal com-
ponents and hence there is no way to decide about component compatibility
and substitutability as well as relations between the three abstraction levels. To
tackle with this issue, we proposed in [7] a formal model for Dedal that supports
all its underlying concepts. The formalization is specified in B, a set-theory and
first order logic based language with a flexible and simple expressiveness. The
formal model is then enhanced with invariant constraints to set rules between
Dedal concepts.

3.2 Intra-level and inter-level rules in Dedal

Intra-level rules in Dedal consist in substitutability and compatibility between
components of the same abstraction level (component roles, concrete component
types, instances). Defining intra-level relations is necessary to set the architecture
completeness property:

An architecture is complete when all its required functionalities are met. This
implies that all required interfaces of the architecture components must be

connected to a compatible provided interface.

Inter-level rules are specific to Dedal and consist in relations between components
at different abstraction levels as shown in Figure 1. Defining inter-level relations
is mandatory to decide about coherence between abstraction levels.

68 A Three-Level Formal Model for Software Architecture Evolution

Fig. 1. Inter-level relations in Dedal

For instance, the conformance rule between a specification and a configuration
is stated as follows:

A configuration C implements a specification S if and only if all the roles of S
are realized by the concrete component classes of C.

3.3 Evolution rules in Dedal

An evolution rule is an operation that makes change in a target software ar-
chitecture by the deletion, addition or substitution of one of its constituent
elements (components and connections). Each rule is composed of three parts:
the operation signature, preconditions and actions. Specific evolution rules are
defined at each abstraction level to perform change at the corresponding formal
description. These rules are triggered by the evolution manager when a change
is requested. Firstly, a sequence of rule triggers is generated to reestablish con-
sistency at the formal description of the initial level of change. Afterward, the
evolution manager attempts to restore coherence between the other descriptions
by executing the adequate evolution rules. Figure 2 presents the corresponding
condition diagram of the proposed evolution process.

4 Conclusion and future work

In this paper, we give an overview of our three-level ADL Dedal and its formal
model. At this stage, a set of evolution rules is proposed to handle architecture
change during the three steps of software lifecycle: specification, implementation
and deployment. The rules were tested and validated on sample models using a
B model checker. As future work, we aim to manage the history of architecture
changes in Dedal descriptions as a way to manage software system versions.
Furthermore we are considering to automate evolution by integrating Dedal and
evolution rules into an eclipse-based platform.

SATToSE 2014– Abderrahman Mokni, Marianne Huchard, Christelle Urtado,
Sylvain Vauttier, Huaxi (Yulin) Zhang 69

Fig. 2. Condition diagram of the evolution process

References

1. Mens, T., Serebrenik, A., Cleve, A., eds.: Evolving Software Systems. Springer
(2014)

2. Medvidovic, N.: ADLs and dynamic architecture changes. In: Joint Proceedings of
the Second International Software Architecture Workshop and International Work-
shop on Multiple Perspectives in Software Development (Viewpoints ’96) on SIG-
SOFT ’96 Workshops, New York, USA, ACM (1996) 24–27

3. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM TOSEM
6(3) (July 1997) 213–249

4. Oquendo, F.: Pi-ADL: An architecture description language based on the higher-
order typed Pi-calculus for specifying dynamic and mobile software architectures.
SIGSOFT Software Engineering Notes 29(3) (May 2004) 1–14

5. Zhang, H.Y., Urtado, C., Vauttier, S.: Architecture-centric component-based devel-
opment needs a three-level ADL. In: Proceedings of the 4th ECSA. Volume 6285 of
LNCS., Copenhagen, Denmark, Springer (August 2010) 295–310

6. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, USA (1996)

7. Mokni, A., Huchard, M., Urtado, C., Vauttier, S., Zhang, H.Y.: Fostering component
reuse: automating the coherence verification of multi-level architecture descriptions.
Submitted to ICSEA 2014 (2014)

70 A Three-Level Formal Model for Software Architecture Evolution

Adaptable Visualisation Based On User Needs

Leonel Merino

Software Composition Group, University of Bern — http://scg.unibe.ch

Abstract. Software developers often ask questions about software sys-
tems and software ecosystems that entail exploration and navigation,
such as who uses this component?, and where is this feature imple-
mented? Software visualisation can be a great aid to understanding and
exploring the answers to such questions, but visualisations require exper-
tise to implement effectively, and they do not always scale well to large
systems. We propose to automatically generate software visualisations
based on software models derived from open source software corpora
and from an analysis of the properties of typical developers queries and
commonly used visualisations. The key challenges we see are (1) under-
standing how to match queries to suitable visualisations, and (2) scaling
visualisations effectively to very large software systems and corpora. In
the paper we motivate the idea of automatic software visualisation, we
enumerate the challenges and our proposals to address them, and we
describe some very initial results in our attempts to develop scalable
visualisations of open source software corpora.

1 Introduction

A visualisation has the advantage that it can present in a comprehensive man-
ner a great deal of information, which makes it a good candidate for software
analysis. Analyzing many systems together enables the exploration of trends
and comparisons in software evolution. The users of a visualisation, whether re-
searchers or developers, may differ in their needs. Some of them are going to
be interested in visualising software quality metrics, while others will want to
explore software evolution or maybe to detect code smells. To understand their
specific needs we will build a taxonomy of the user needs. The taxonomy should
define the means that will be provided to the user for interacting with the vi-
sualisation (e.g. to inspect entities, to launch new visualisations based on the
selected entity), and the type of information he is going to receive (e.g. method
attributes, invocation sender). The taxonomy should produce a classification of
user needs, such as most complex methods, extent of polymorphism, method
invocations or class hierarchy length.

1.1 Automatic Software Visualisation

We want to provide a query mechanism to adapt automatically the visualisation
to the specific user needs. The mechanism should provide means to specify the

kind of attributes to be explored (e.g. the kind of entity, the associated properties,
and the corresponding relations). For instance, we could specify that we want
to visualise at a package level a view with the method invocations to others
packages in the system. The mechanism should automatically select the most
appropriate visualisation that satisfies our needs by choosing the right shapes,
colours, layout and navigation. The visualisation should allow the user to explore
and to interact with entities, to inspect them and to launch new visualisations
based on the entity selected. For instance, in a visualisation that shows methods,
classes, packages and systems, if we select a system it could provide means to
launch a new visualisation with the evolution history of the versions of that
system. Although related work supports this kind of interactions, they have to
be specified manually.

1.2 Visualisations for Large Systems and Corpora

From a scalability point of view, one of the most difficult challenges in software
visualisation is representing corpora of software systems. A corpus can contain
hundreds of software systems, so the requirements on memory and processing
power can be much higher than those for visualising individual software systems.
Also the effort involved in generating the visualisation is higher: once a corpus
is downloaded, we have to extract models from all the included systems. By
querying attributes of the model we can extract facts about the systems. The
visualisation should also provide means to navigate and to interact with those
entities and relations.

2 Early results

As a first approach we wanted to cope with the visualisation of large systems
and corpora. Open-source software fits very well this kind of analysis since it
gives us access the source code of complete systems. Qualitas Corpus [4] and
SqueakSource [2] are two available corpora. Pangea [3] is a tool that enables
running language independent analyses on corpora of object-oriented software.
It provides Moose [1] models for Qualitas Corpus and SqueakSource systems
allowing us to create Moose images for every system and interact with them
by running scripts. Qualitas Corpus comprises 112 open source Java systems,
58,557 classes, almost 15 MLOC and 754 versions, while SqueakSource contains
28 Smalltalk systems.

For our visualisation we needed a tool to depict many components in a com-
prehensive manner, in the sense that fine and coarse grained entities can be
distinguished at a sight. Although there are many tools for creating visualisa-
tions of software, not many are suitable for large systems. Even fewer tools can
support visualising many systems at the same time or more than one corpus at
the time.

Figure 1 presents five systems of Qualitas Corpus: AspectJ, ArgoUML,
ANTLR, AOI, Axion comprising more than 1.5MLOC. Since in this example we

72 Adaptable Visualisation Based on User Needs

wanted to visualise the use of polymorphism at a fine-grained level, a TreeMap
is an appropiate layout. We used red color to indicate the presence of polymor-
phism, this is done by an heuristic that marks as polymorphic the methods of
interfaces that have more than one implementation. We colored every level of
the hierarchy such as method, class and package. The intensity of the color is
related to the number of lines of code involved in their polymorphic methods.

The main issues that we foresee are memory use and processing time. This
visualisation took a bit more than 8 minutes to be rendered and required to load
almost 300MB of Moose models. We implemented this as a proof-of-concept and
we did not do any optimisation yet. Since our intent is to provide a visualisation
of different corpora at the same time we will need to overcome these contraints.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Agile Software Assessment” (SNSF project No.
200020-144126/1, Jan 1, 2013 - Dec. 30, 2015). This work has been partially
funded by CONICYT BCH/Doctorado Extranjero 72140330.

References

1. Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an Extensible
Language-Independent Environment for Reengineering Object-Oriented Systems.
In Proceedings of CoSET ’00 (2nd International Symposium on Constructing Soft-
ware Engineering Tools), June 2000. URL: http://scg.unibe.ch/archive/papers/
Duca00bMooseCoset.pdf.

2. Adrian Lienhard and Lukas Renggli. Squeaksource — smart monticello repository.
European Smalltalk User Group Innovation Technology Award, August 2005. Won
the 2nd prize. URL: http://scg.unibe.ch/archive/reports/Lien05b.pdf.

3. SCG: Pangea 2.0. URL: http://scg.unibe.ch/research/pangea.
4. E. Tempero, C. Anslow, J. Dietrich, T. Han, Jing Li, M. Lumpe, H. Melton, and

J. Noble. The qualitas corpus: A curated collection of java code for empirical studies.
In Software Engineering Conference (APSEC), 2010 17th Asia Pacific, pages 336
–345, December 2010. doi:10.1109/APSEC.2010.46.

SATToSE 2014– Leonel Merino 73

Fig. 1. Visualisation of an heuristic of polymorphism in five systems: AspectJ, Ar-
goUML, ANTLR, AOI, Axion. More than 1.5MLOC at a glance.

74 Adaptable Visualisation Based on User Needs

A tale about software profiling, debugging,
testing, and visualization

Alexandre Bergel

http://bergel.eu

Pleiad Lab, Department of Computer Science (DCC), University of Chile

Programming as a modern activity. When I was in college, I learned pro-
gramming with C and Pascal using a textual and command-line programming
environment. At that time, about 15 years ago, Emacs was popular due to its
sophisticated text editing capacities. The gdb debugger allows one to manipulate
the control flow including the step-into, step-over, and restart operations. The
gprof code execution profiler indicates the share of execution time for each
function, in addition to the control flow between each method.

Nowadays, object-orientation is compulsory in university curriculum and
mandatory for most software engineering positions. Eclipse is a popular pro-
gramming environment that greatly simplifies the programming activity in Java.
Eclipse supports sophisticated options to search and navigate among textual files.
Debugging object-oriented programs is still focused on the step-into, step-over and
restart options. Profiling still focuses on the method call stack: the JProfiler and
YourKit profilers happily output resource distributions along a tree of methods.

Sending messages is largely perceived as a major improvement over executing
functions, which is the key to polymorphism. Whereas programming languages
have significantly evolved over the last two decades, most of the improvements
on programming environments do not appear to be a breakthrough. Navigating
among software entities often means searching text portions in text files. Profiling
is still based on methods executions, completely discarding the notion of objects.
Debugging still comes with its primitive operations on stack; again ignoring
objects.

This paper presents the research line carried out by the author and his
collaborators on making programming environments closer to the object-oriented
paradigm. Most of the experiences and case studies summarized below have been
carried out in Pharo1 – an object-oriented and dynamically typed programming
language.

Profiling. Understanding the root of a performance drop or improvement re-
quires analyzing different program executions at a fine grain level. Such an
analysis involves dedicated profiling and representation techniques. Two recog-
nized profilers – JProfiler and YourKit – both fail at providing adequate metrics
and visual representations, conveying a false sense of the performance variation
root.

We have proposed performance evolution blueprint, a visual support to pre-
cisely compare multiple software executions [1]. The performance evolution

1 http://pharo.org

A

B

C

Color

Δ # executions

Δ time

A

B

A invokes B

D E

Fig. 1: Performance evolution blueprint

blueprint is summarized in Figure 1. A blueprint is obtained after running two
executions. Each box is a method. Edges are invocations between methods (a
calling method is above the called methods). Height of a method is the difference
of execution time between the two executions. If the difference is positive (i.e., the
method is slower), then the method is shaded in red, otherwise it is green. The
width of a method is the absolute difference in the number of executions, thus
always positive. Light red / pink color means the method is slower, but its source
code has not changed between the two executions. If red the method is slower
and the source code has changed. Light green indicates a faster non-modified
method. Green indicates a faster modified method.

Our blueprint accurately indicates roots of performance improvement or
degradation. We have developed Rizel, a code profiler to efficiently explore
performance of a set of benchmarks against multiple software revisions.

Testing. Testing is an essential activity when developing software. It is widely
acknowledged that a test coverage above 70% is associated with a decrease in
reported failures. After running the unit tests, classical coverage tools output
the list of classes and methods that are not executed. Simply tagging a software
element as covered may convey an incorrect sense of necessity: executing a long
and complex method just once is potentially enough to be reported as 100%
test-covered. As a consequence, a developer may receive an incorrect judgement
as to where to focus testing effort.

By relating execution and complexity metrics, we have identified essential
patterns to characterize the test coverage of a group of methods [2]. Each pattern
has an associated action to increase the test coverage, and these actions differ in
their effectiveness. We empirically determined the optimal sequence of actions to
obtain the highest coverage with a minimum number of tests. We present test
blueprint, a visual tool to help practitioners assess and increase test coverage by
graphically relating execution and complexity metrics. Figure 2 is an example of
a test blueprint. Two versions of the same class is represented. Inner small boxes
represent methods. The size of a method indicates its cyclomatic complexity.
Taller a method is, more complex it is. Edges are invocations between methods,
statically determined. Red color indicates uncovered methods. The figure shows

76 A Tale about Software Profiling, Debugging, Testing, and Visualization

Coverage: 40.57% Coverage: 60.60%

Fig. 2: Test blueprint

an evolution of a class in which complex uncovered methods have been broken
down into simpler methods.

Debugging. During the process of developing and maintaining a complex software
system, developers pose detailed questions about the runtime behavior of the
system. Source code views offer strictly limited insights, so developers often
turn to tools like debuggers to inspect and interact with the running system.
Unfortunately, traditional debuggers focus on the runtime stack as the key
abstraction to support debugging operations, though the questions developers
pose often have more to do with objects and their interactions.

We have proposed object-centric debugging as an alternative approach to
interacting with a running software system [3]. By focusing on objects as the key
abstraction, we show how natural debugging operations can be defined to answer
developer questions related to runtime behavior. We have presented a running
prototype of an object-centric debugger, and demonstrated, with the help of a
series of examples, how object-centric debugging offers more effective support for
many typical developer tasks than a traditional stack-oriented debugger.

Visual programming environment. Visualizing software-related data is of-
ten key in software developments and reengineering activities. As illustrated
above in our tools, interactive visualizations play an important intermediary
layer between the software engineer and the programming environment. General
purpose libraries (e.g., D3, Raphaël) are commonly used to address the need for
visualization and data analytics related to software. Unfortunately, such libraries
offer low-level graphic primitives, making the specialization of a visualization
difficult to carry out.

Roassal is a platform for software and data visualization. Roassal offers
facilities to easily build domain-specific languages to meet specific requirements.
Adaptable and reusable visualizations are then expressed in the Pharo language.
Figure 3 illustrates two visualizations of a software system dependencies. Each
class is represented as a circle. On the left-hand side, gray edges are inheritance
(the top superclass is at the center) and blue lines are dependencies between

SATToSE 2014– Alexandre Bergel 77

Fig. 3: Visualization of a software system

classes. Each color indicates a component. On the right-hand side, edges are
dependencies between classes whereas class size and color indicate the size of
the class. Roassal has been successfully employed in over a dozen software
visualization projects from several research groups and companies.

Future work. Programming is unfortunately filled with repetitive and manual
activities. The work summarized above partially alleviates this situation. Our
current and future research line is about making our tools not only object-centric,
but domain-centric. We foresee that being domain specific is a way to make tools
closer to practitioners, and therefore more accepted.

References

1. J. P. S. Alcocer, A. Bergel, S. Ducasse, M. Denker, Performance evolution blueprint:
Understanding the impact of software evolution on performance, in: A. Telea, A. Ker-
ren, A. Marcus (Eds.), VISSOFT, IEEE, 2013, pp. 1–9.

2. A. Bergel, V. P. na, Increasing test coverage with hapao, Science of Computer
Programming 79 (1) (2012) 86–100. doi:10.1016/j.scico.2012.04.006.

3. J. Ressia, A. Bergel, O. Nierstrasz, Object-centric debugging, in: Proceeding
of the 34rd international conference on Software engineering, ICSE ’12, 2012.
doi:10.1109/ICSE.2012.6227167.
URL http://scg.unibe.ch/archive/papers/Ress12a-ObjectCentricDebugging.

pdf

78 A Tale about Software Profiling, Debugging, Testing, and Visualization

Survivability of Software Projects in Gnome

– A Replication Study

Tom Mens1, Mathieu Goeminne1, Uzma Raja2, and Alexander Serebrenik3

1 Software Engineering Lab, Department of Computer Science, Faculty of Sciences
University of Mons, Belgium

Email: { tom.mens | mathieu.goeminne }@umons.ac.be
2 Department of Information Systems, Statistics and Management Science

University of Alabama, Tuscaloosa, USA
Email: uraja@cba.ua.edu

3 Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

Email: a.serebrenik@tue.nl

Abstract. This extended abstract contains a summary of our submitted
ICSME 2014 paper that reports on a replication study of Open Source
Software project survivability. The original study was conducted on 136
SourceForge projects and proposed a predictive model of project in-
activity based on a multidimensional measure of Viability. We replicated
the study by considering 183 projects from the Gnome ecosystem and
by re-operationalizing the measure of Viability in order to accommo-
date the unique characteristics of interacting projects belonging to the
Gnome ecosystem. Results of our replication study reveal that the Via-
bility Index model has significant ability to identify projects that become
inactive compared to the ones that remain active in the ecosystem.

1 Introduction

Software ecosystems represent a successful model for developing collection of
software systems sharing a common goal that is the subject of a growing in-
terest from the research community, as can be witnessed by a recent systematic
literature review [7]. Messerschmitt and Szyperski [8] define a software ecosystem
as “a collection of software products that have some given degree of symbiotic
relationships,” and Lungu [6] defines it as “a collection of software projects
which are developed and evolve together in the same environment.” In such
ecosystems, communities of developers collaborate together, often on a volun-
tary basis, while users and developers of the software can submit bug reports
and requests for changes [3].

Since maintaining software projects requires considerable effort and invest-
ment, understanding which projects are more likely to fail can be useful to take
preventive and corrective actions to improve these projects, to discontinue their
development, or to take other decisions at the ecosystem level. In our paper, we
carry out a replication study of the predictive model of project survivability for

SourceForge [9], by adapting the model and evaluating its predictive power in
the context of the Gnome ecosystem. To facilitate reproducibility of our repli-
cation study, all the extracted data used for our analysis as well as the tooling
and metrics used have been made available on
https://bitbucket.org/mgoeminne/gnome-survivability/downloads.

2 Experimental Setup

In [9], Viability was defined as the basis of a predictive model to assess open
source project survivability. Viability aims to reflect the ability of a project
to grow and maintain its structure in the presence of perturbations. Viability
was defined as a complex, multidimensional measure involving three dimensions:
Vigor, Resilience and Organization.

Vigor represents the ability of a project to grow over a period of time. In
our replication, we defined V (p) the Vigor of a Gnome project p to take into
account the cumulative growth of a project and its team.

Resilience reflects the ability of a project to recover from internal or external
perturbations, which are interpreted as changes in the project’s operating envi-
ronment. We defined R(p) the resilience of a Gnome project p as the number
of distinct contributors involved in its bug tracker divided by the mean time to
resolve issues for this project.

Organization represents the amount of structure exhibited by the interaction
between software project contributors. In our replication study, we operational-
ized the Organisation of a Gnome project p, called O(p), by using the Simpson
index, a well-known measure of ecosystem diversity [10].

Finally, we operationalize Viability by defining a viability index VI.

VI (p) = α+ β1V (p) + β2R(p) + β3O(p) (1)

We decided to determine lack of project survival for Gnome projects in terms
of inactivity in its version repository. We consider a project as being inactive if
there were no commits to its version repository during the 365 days before the
date on which we extracted the source code repository (i.e., on January 2013).

197 Gnome projects use an both an official Git source code repository and
an official Bugzilla-based bugtracking system. We extracted the data contained
in these data sources by using CVAnaly2 and Bicho, We extracted the official
Git repositories and the official mailing list of these project by using two tools
belonging to the MetricsGrimoire toolkit (see metricsgrimoire.github.io). During
data extraction, we carried out identity merging [2,4]. The extracted data was
stored in two relational SQL databases.

3 Analysis

Using the viability index VI described above, we statistically analyse whether we
can use V , R and O as effective predictors of active and inactive Gnome projects.

80 Survivability of Software Projects in Gnome

The original data was largely skewed (very high values for very few projects).
We also observed a difference in scale of the three variables. For better inter-
pretability of the results, we therefore performed logarithmic transformation on
our variables. This transformation allows the three variables to have a compara-
ble range of values [5]. We conducted a Shapiro-Wilk normality test that failed
to reject the null hypothesis, thereby providing support that the data is normal
for the three considered measures.

To test the predictive power of the predictor variables V , R and O, we need
to test how well they can predict the outcome. In this study, a project will be
classified as either active or inactive. We refer to this outcome as VI = 0 or 1.
Since this is a binary result, we cannot use traditional techniques like least square
regression that only allow for numeric prediction. Logistic Regression (LR) is a
statistical technique that determines the impact of multiple independent vari-
ables simultaneously to predict a binary or a categorical outcome [1, p. 67]. The
logarithmic transformation we carried out does not affect the outcome of LR.
Therefore, it appears to be a well-suited technique.

LR analysis identifies if the predictor variables are significant in accurately
categorizing the outcome as high (VI=1) or low (VI=0). It also computes the
relative odds ratio for the predictor variables. Odds ratios [1, p. 28] are a sta-
tistical mechanism to gauge the impact of a variable on the probability of the
outcome being 0 or 1. In our case, we establish that using the predictor variables
has a statistically significant improvement in predicting the outcome.

Next, we use the Goodness of Fit for determining whether the predictor
variables have enough information or whether we need a more complex model
including additional dimensions of viability. We reject the null hypothesis that
states that adding new variables (or interactions or polynomials of existing pre-
dictors) significantly improves the model.

Finally, we show that each of the individual predictor variables we use sig-
nificantly improves the prediction of VI.

4 Discussion and Future Work

We established in the previous section that all three dimensions of Viability are
significant and sufficient in discriminating active and inactive projects in the
Gnome ecosystem. However, we observe that the results for Gnome differ from
the original SourceForge study. For SourceForge projects it was noticed
that all three dimensions are significant for a project to be viable, yet a project
could have low values on one or more dimensions and still be successful based
on other dimensions. In contrast, active Gnome projects predominantly have
higher values of V , R and O. This difference could be because of the differences
in the nature of SourceForge and Gnome. While SourceForge projects
are independent (for most cases), the Gnome ecosystem is relatively networked
compared to SourceForge. We also observed some differences for the O metric
that may be attributed to the fact that we have used Simpson’s index as a
measure of diversity, whereas the original study used an entropic measure of

SATToSE 2014– Tom Mens, Mathieu Goeminne, Uzma Raja, Alexander
Serebrenik 81

Mutual Information. Further studies need to be conducted to investigate the
impact of changes in organization.

From a statistical point of view, our findings support the original study in
terms of statistical significance of all three dimensions of Viability. Like the
original study, we found Vigor to be the most significant indicator of project
success. A unit change in Vigor has the biggest impact on a positive outcome.
However, we also observe that both Resilience and Organization have odds ratio
on the same order of magnitude as Vigor. Since the original study did not use
scaled values of the predictor variables, it is hard to infer whether the differences
in the impact of the three predictors is a reflection of scale differences or a
difference in how the predictors impact the outcome.

The misclassification rate of our study is still within acceptable range, how-
ever, we are investigating the cause of weaker performance of our model for
inactive projects. This might be indicative of the need to improve our metrics.

Acknowledgment

This work is partially supported by research projects FRFC PDR T.0022.13, fi-
nanced by the F.R.S.-FNRS, and Action de Recherche Concertée AUWB-12/17-
UMONS-3, financed by the Ministère de la Communauté française – Direction
générale de l’Enseignement non obligatoire et de la Recherche scientifique, Bel-
gium.

References

1. Alan Agresti. An Introduction to Categorical Data Analysis. Wiley-Interscience,
2nd edition, 2007.

2. Mathieu Goeminne and Tom Mens. A comparison of identity merge algorithms for
software repositories. Science of Computer Programming, 78(8):971–986, August
2013.

3. Mathieu Goeminne and Tom Mens. Software Ecosystems: Analyzing and Managing
Business Networks in the Software Industry, chapter Analyzing ecosystems for open
source software developer communities. Edward Elgar, 2013.

4. Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik, and Mark G. J. van den
Brand. Who’s who in Gnome: using LSA to merge software repository identities.
pages 592–595. IEEE, 2012.

5. Loet Leydesdorff and Stephen Bensman. Classification and powerlaws: The loga-
rithmic transformation. Journal of the American Society for Information Science
and Technology, 57:1470–1486, 2006.

6. Mircea Lungu. Towards reverse engineering software ecosystems. pages 428–431,
2008.

7. Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems: A system-
atic literature review. 86(5):1294–1306, May 2013.

8. D.G. Messerschmitt and C. Szyperski. Software ecosystem: Understanding and
indispensable technology and industry. MIT Press, 2003.

9. Uzma Raja and Marietta J. Tretter. Defining and evaluating a measure of open
source project survivability. 38(1):163–174, 2012.

10. E.H. Simpson. Measurement of diversity. Nature, 163(688), 1949.

82 Survivability of Software Projects in Gnome

Usage Contracts

Kim Mens1, Angela Lozano1,2, and Andy Kellens2

1 Université Catholique de Louvain
Place Sainte Barbe 2

Louvain-la-Neuve, Belgium
2 Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels - Belgium

kim.mens@uclouvain.be, alozano@soft.vub.ac.be, akellens@vub.ac.be

Developers often encode design knowledge through structural regularities
such as API usage protocols, coding idioms and naming conventions. As these
regularities express how the source code should be structured, they provide vital
information for developers (re)using that code. Adherence to such regularities
tends to deteriorate over time when they are not documented and checked ex-
plicitly.

Our uContracts tool and approach allows codifying and verifying such regu-
larities as ‘usage contracts’. The contracts are expressed in an internal domain-
specific language that is close to the host programming language, the tool is
tightly integrated with the development environment and provides immediate
feedback during development when contracts get breached, but the tool is not
coercive and allows the developer to decide if, when and how to correct the bro-
ken contracts (the tool just highlights the errors and warnings in the integrated
development environment). In spirit, the approach is very akin to unit testing,
except that we do not test behaviour, but rather verify program structure.

The tool, of which some screenshots can be found above, was prototyped in an older
version of the Pharo dialect of the Smalltalk programming language.

The tool, of which some screenshots can be found above, was prototyped in
an older version of the Pharo dialect of the Smalltalk programming language.

84 Usage Contracts

Author Index

Aksu, Hakan, 60
Ammar, Ines, 49
Arévalo, Gabriela, 10
Aytekin, Çiğdem, 22

Bagge, Anya Helene, 8
Basciani, Francesco, 39
Bergel, Alexandre, 75
Boana, Ahmad Bedja, 49

Carbonnel, Jessie, 49
Chartier, Theo, 49

De Roover, Coen, 14
Di Rocco, Juri, 27

Fallavier, Franz, 49

Goeminne, Mathieu, 79

Hamid, Ammar, 56
Huchard, Marianne, 6, 49, 67

Kellens, Andy, 83

Leinberger, Martin, 63
Lozano, Angela, 10, 83
Ly, Julie, 49
Lämmel, Ralf, 18, 45, 60, 63

Marinelli, Romeo, 31
Mens, Kim, 10, 83
Mens, Tom, 79
Merino, Leonel, 71
Milojković, Nevena, 54
Mokni, Abderrahman, 67
Moonen, Leon, 3

Nguyen, Vu-Hao (Daniel), 49

Pierantonio, Alfonso, 7

Pinier, Florian, 49

Raja, Uzma, 79
Rosa, Gianni, 35

Saenen, Ralf, 49
Schmorleiz, Thomas, 45
Schuster, Philipp, 18
Serebrenik, Alexander, 2, 79
Stevens, Reinout, 14
van der Storm, Tijs, 22

Urtado, Christelle, 67

Varanovich, Andrei, 63
Vauttier, Sylvain, 67
Villon, Sebastien, 49
Vos, Tanja, 5

Zhang, Huaxi (Yulin), 67

85

